
B OUNDED R AT I ONA L I T Y in
R E I N F ORC EM EN T L E A RN I NG

Jan Malte Lichtenberg

A thesis submitted for the degree of Doctor of Philosophy
University of Bath

Department of Computer Science
December 2021

colophon

�is dissertation was typeset in LATEX, using Robert Slimbach’s Minion Pro as
both the text and display type-face.

�e layout is inspired by Aaron Turon‘s PhD thesis1, which uses elements of 1 http://aturon.github.io/academic/

the classicthesis2 package developed by André Miede and the tufte-latex3 2 https://bitbucket.org/amiede/

classicthesis/
3 https://tufte-latex.github.io/

tufte-latex/

package, which itself is based on Edward Tu�e’s books.

Models of bounded rationality for reinforcement learning.
© 2022 Jan Malte Lichtenberg

http://aturon.github.io/academic/
https://bitbucket.org/amiede/classicthesis/
https://bitbucket.org/amiede/classicthesis/
https://tufte-latex.github.io/tufte-latex/
https://tufte-latex.github.io/tufte-latex/

copyright notice

Attention is drawn to the fact that copyright of this thesis rests with the au-
thor and copyright of any previously publishedmaterials includedmay rest with
third parties. A copy of this thesis has been supplied on condition that anyone
who consults it understands that they must not copy it or use material from it
except as licensed, permitted by law or with the consent of the author or other
copyright owners, as applicable

Jan Malte Lichtenberg

declaration of any previous submission of the work

�e material presented here for examination for the award of a higher degree
by research has not been incorporated into a submission for another degree.

Jan Malte Lichtenberg

declaration of authorship

I am the author of this thesis, and the work described therein was carried out
by myself personally.

Jan Malte Lichtenberg

abstract

�e broad problem I address in this dissertation is the design of autonomous
agents that can e�ciently learn goal-directed behavior in sequential decision-
making problemsunder uncertainty. I investigate howcertainmodels of bounded
rationality—simple decision-making models that take into consideration the
limited cognitive abilities of biological and arti�cial minds—can inform rein-
forcement learning algorithms to producemore resource-e�cient agents. In the
twomain parts of this dissertation I use di�erent existingmodels of bounded ra-
tionality to address di�erent resource limitations present in sequential decision-
making problems. In the �rst part I introduce a boundedly rational function ap-
proximation architecture for reinforcement learning agents to reduce the amount
of training data required to learn a useful behavioral policy. In the second part
I investigate how Herbert A. Simon’s satis�cing strategy can be applied in se-
quential decision making problems to reduce the computational e�ort of the
action-selection process.

CONTENT S

I INTRODUCTION
1 overview 15

1.1 Reinforcement learning & the tale of the optimal policy . . 15
1.2 Notions of rational behavior 18
1.3 Bounded rationality in arti�cial intelligence 19
1.4 Outline & contributions 20
1.5 Publications 23

2 background & rel ated literature 25
2.1 Supervised learning 25

2.1.1 Example data for supervised learning: Rent 26
2.1.2 Prediction tasks 26
2.1.3 Prediction models 29

2.2 Models of bounded rationality 33
2.2.1 Feature directions. 34
2.2.2 Lexicographic models 34
2.2.3 Equal-weighting strategies 35

2.3 Reinforcement learning 36
2.3.1 Value-based reinforcement learning 38
2.3.2 Classi�cation-based reinforcement learning 41

2.4 Related work 43

II BOUNDEDLY RATIONAL FUNCTION APPROXIMATION
3 the predictive p ower of

simple regression models 49
3.1 Simple regression models 50
3.2 Parameter estimation from training data 52
3.3 Desiderata for an empirical analysis & literature review . . 53
3.4 Empirical analysis 55
3.5 Discussion 59

4 bounded rationalit y as regul arization :
shrinkage toward equal weights 61
4.1 Background 62
4.2 Shrinkage toward equal weights 63
4.3 Related work 65

4.4 Bias-variance analysis of equal-weighting models 67
4.5 Empirical analysis 71

4.5.1 Simulated Environments 71
4.5.2 Real-World Environments 74

4.6 Discussion 76
5 Boundedly rational when it mat ters most :

Iterative p olicy space expansion in reinforcement
learning 79
5.1 Background & overview 81
5.2 M-learning 82
5.3 Learning feature directions (LFD) 84
5.4 Iterative policy-space expansion (IPSE) 86
5.5 Related literature 89
5.6 Experiments 90

5.6.1 Tetris 90
5.7 Discussion 93

III BOUNDEDLY RATIONAL ACTION SELECTION
6 satisficing p olicies in markov decision pro cesses 97

6.1 Preliminaries 98
6.2 E�ort-quality trade-o� in the space of policies 99
6.3 ξ-satis�cing policies: Low-e�ort decision making 100

6.3.1 Characterizing the e�ort-quality tradeo� of satis�cing
using example distributions for q(a∣s) 102

6.3.2 Satis�cing can be a Pareto improvement on the greedy
policy. 104

6.4 From one-shot to sequential decision making. 107
6.5 Aspiration tracking 108
6.6 Long-term Pareto improvement by aspiration tracking. . . 110
6.7 Value tracking 114
6.8 Experiments 115

6.8.1 Macro-action gridworld: tabular value function and large
action set 116

6.8.2 Lunar-Lander: Approximated value functions. . . . 117
6.9 Related literature 119
6.10 Discussion 121

IV DISCUSSION & APPENDIX
7 discussion of contribu tions 125
A appendix a . code & implementation details . . . 129
B appendix b . additional figures 135
C appendix c . data sets 143

L I ST OF F IGURES

2.1 Regression 27
2.2 Classi�cation 27
2.3 Paired comparison 28
2.4 Discrete choice 28
2.5 Feed-forward neural network with H hidden layers. 32
2.6 Single neuron of a feed-forward neural network. 33
2.7 Agent-environment interface in a Markov decision process (MDP). 37

3.1 Simple regression models: cross-validated performance on large
training-set sizes averaged across 60 data sets. 57

3.2 Simple regression models: learning curves averaged across 60 data
sets. 58

3.3 Simple regression models: individual learning curves on data sets
Diabetes, Prostate, and Sat.. 59

4.1 Regularization paths for STEW-regularized linear regression mod-
els, ridge regression, and Lasso regression. 64

4.2 Non-negative Lasso regularization paths 66
4.3 Learning curves for regularized linear regressionmodels and equal-

weights regression in simulated environments. 72
4.4 Empirical bias-variance decomposition for shrinkage toward equal

weights and ridge regression. 74
4.5 Learning curves for regularized linear regressionmodels and equal-

weights regression in real-world environments. 75

5.1 Policy space of the LFD algorithm for p = 2 features. 88
5.2 Policy space Πλ for p = 2 features as a function of the regularization

strength λ. 88
5.3 Policy weight trajectories of the IPSE algorithm in Tetris.. . . . 89
5.4 Tetris on the Nintendo Game Boy. 90
5.5 �e seven Titriminos of size 4 used in the classic version of Tetris. . 90
5.6 Possible actions in Tetris. 91
5.7 Learning curves for iterative policy space expansion and other algo-

rithms in Tetris. 92

6.1 Role of the aspiration level for a ξ-satis�cing policy 101
6.2 In�uence structure of the aspiration level and the distribution of

action values on quality and e�ort of the satis�cing policy. . . . 101
6.3 E�ort-quality trade-o� for satis�cing. 103
6.4 Analysis of e�ort using the number of satisfactory actions, ñ, as

intermediary variable. 105
6.5 Expected e�ort of the satis�cing policy. 106
6.6 Toy MDP 108
6.7 Optimal value function q∗(s, a) for the toy MDP shown in Figure

6.6. 109
6.8 Episode summary of a satis�cing agent in the toy MDP 109
6.9 Toy MDP 2: Failure case for aspiration tracking. 113
6.10 Optimal value function q∗(s, a) for the toy MDP shown in Figure

6.9. 113
6.11 Gridworld with macro actions. 116
6.12 E�ort-quality trade-o�s for ξ-satis�cing with aspiration tracking

and ε-greedy policies. 117
6.13 Lunar-Lander environment 118
6.14 E�ort-quality trade-o�s for the ξ-satis�cing policy with varying

update rules aswell as the greedy policy in the Lunar Lander domain.
119

B.1 Learning curves for simple regression models. Data sets 1 to 18. . 136
B.2 Learning curves for simple regression models. Data sets 19 to 37. . 137
B.3 Learning curves for simple regression models. Data sets 38 to 57. . 138
B.4 Regularization paths for linear regression with total-variation (TV)

regularization.. 139
B.5 Simulation results using true-weight distributions with very high

variance. 139
B.6 STEW vs. regularized linear models with known feature directions. 140
B.7 STEWvs. regularized linearmodelswith estimated feature directions.

141

L I ST OF TABLE S

2.1 Example regression data: Rent. 27
2.2 Example choice set data: Rent 29

3.1 Summary of the literature review for simple regression models.. . 54
3.2 Data sets used in the empirical comparison. 56

6.1 Learning parameters for the DQN algorithm. 118

L I ST OF ALGOR ITHMS

1 Tabular Sarsa with ε-greedy exploration. 39
2 Semi-gradient Sarsawith function approximation and ε-greedy exploration.

40
3 Rollout(s, a, πr): Rollout procedure for estimating the value of

an action a in state s using rollout policy πr 42
4 Classi�cation-based reinforcement learning with rollouts to learn

a policy π(general form). 43
5 M-learning to learn a policy π. 83
6 Learning feature directions (LFD) 85
7 Iterative policy space expansion (IPSE) to learn a linear policy π. . 87
8 ξ-satis�cing policy with respect to q(s, a). 102
9 Classi�cation-Based Modi�ed Policy Iteration (CBMPI). 133
10 BootstrappedRollout(s, a, πr , v): Rollout procedure for esti-

mating the value of an action a in state s using rollout policy πr and
value function v. 134

Part I

INTRODUCT ION

1
OVERV IEW

�is dissertation investigates how simple models of bounded rationality can
inform reinforcement learning algorithms to produce more resource-e�cient
agents.
In the following sections I argue thatmodern reinforcement learning is rooted

in the pursuit of perfect rationality, discuss two limitations of this approach, and
outline how algorithms inspired by the alternative notion of bounded rationality
are able to address these limitations.

1.1 reinforcement learning & the tale of the optimal policy

�e broader goal of arti�cial intelligence considered in this dissertation is that
of building agents that produce useful behavior using limited resources.1 I focus 1 As opposed to, for example, building agents

that imitate humandecisionmaking. SeeRus-
sell andNorvig (2010) for a comparison of dif-
ferent goals in arti�cial intelligence research.

on agents that learn useful behavior autonomously, that is, without being given
explicit instructions about what to do in which situation.
One way to enable an agent to learn autonomously is to provide feedback

on the usefulness of its behavior (rather than on the correctness of its actions).
�is feedback is usually given in the form of a numerical signal, called reward.2 2 See Sutton and Barto (2018, Section 1.7) for a

history of research on learning from rewards.For example, a chess-playing agent could receive a positive reward for a game-
winning move but a lower (or negative) reward for a move that immediately
leads to the opponent’s victory. Similarly, a self-driving car that crashes into a
wall could receive a negative reward, while it could receive a positive reward for,
say, every second that it drives safely.

�e general idea behind learning from rewards is simple. By repeatedly in-
teractingwith its environment, the agent gathers experience on a)which actions
yield which rewards in which kind of situations, and b) how the agent’s environ-
ment changes as a function of the agent’s actions. If the agent learns to choose
actions that lead to high rewards or to states of the environment that lead to
high rewards in the future, then the resulting behavior is useful—because this
is how the rewards have been designed in the �rst place.
And yet, learning from rewards is di�cult. In general, the reward is only

known a�er the action has been executed. Also, every action not only yields an
immediate reward but also changes the agent’s situation in the environment and
thus a�ects future rewards as well. Furthermore, in some domains meaningful
rewards are extremely rare, resulting in a large temporal delay between the exe-

16

cution of an action and the corresponding feedback. For example, in chess, the
�rst and only reward occurs at the end of the game.�e agent has to learn good
opening moves as well as end-game behavior from this single reward only.
In view of these di�culties, modern reinforcement learning has turned to

one approach in particular: optimization of long-term reward. According to
Sutton andBarto (2018, p. 1), “reinforcement learning is learningwhat to do—how
to map situations to actions—so as to maximize a numerical reward signal”. A
mapping from situations (or states) to actions is called a policy. A policy that
maximizes some notion of cumulative reward received by an agent over the
course of a life time is called an optimal policy. Reinforcement learning, so to
speak, is the quest for an optimal policy.

�e formalization of the learning objective as a reward optimization problem
is intuitively appealing: if the optimization procedure is carried out successfully,
the agent learns themost useful behavior. Using optimization also has practical
advantages. Mathematical optimization is a well-established discipline and pro-
vides a large range of proven and well-studied optimization algorithms. In fact,
most existing reinforcement learning algorithms are at their core optimization
algorithms from convex optimization or optimal control theory,3 adapted to the 3 Policy gradientmethods are hill-climbing al-

gorithms. Value-based reinforcement learn-
ing algorithms are approximations of dy-
namic programming algorithms (Bellman,
1957). See also Section 2.3.

problem of learning an optimal policy from delayed rewards.
�ese adapted optimization algorithms have led to impressive advances in

learning how to play challenging two-player games with sparse rewards such
as Backgammon,4 Chess, and Go;5 learning how to play video games such as 4 Tesauro (1992, 2002)

5 Silver et al. (2017b,a)Tetris6 or ATARI games;7 and learning to solve continuous control and robotics
6 Gabillon et al. (2013)
7Mnih et al. (2015)

problems.8

8 Lillicrap et al. (2015)And yet, existing reinforcement learning algorithms have seen limited adop-
tion to real-life tasks.9 Next I describe two limitations of the reward-optimization 9 Dulac-Arnold et al. (2019)
approach that contribute to this lack of adoption.

a. Reward optimization requires too much data. To choose optimally is to choose
an action thatmaximizes long-term value. Unfortunately, the values of avail-
able actions are hardly ever known before the decision is made. �ey are
usually estimated by a mathematical model, called a value function, which
takes a description of a given action as input and outputs an approximation
of the action’s value. In the context of reward optimization, the goal then
becomes to approximate the true action values as closely as possible. Most
reinforcement learning algorithms use linear functions or arti�cial neural
networks for value function approximation. Whilst these models are indeed
capable of producing highly accurate value estimates, they require substan-
tial amounts of data for training—data that is not provided but has to be
arduously collected by the agent through exploration in the environment.

�e problem is the following. To estimate a good value function, the agent
requires large amounts of high-quality data. However, to collect more high-
quality data, the agent requires a somewhat good value function in the �rst
place. Many reinforcement learning algorithms are guaranteed to eventu-

overview 17

ally escape from this gridlock situation. However, they may require pro-
hibitive amounts of time and computation to do so in many complex real-
world tasks.

Note that when an accurate simulator of the environment is available, the re-
quired data can simply be created through simulation. And indeed, all suc-
cessful reinforcement learning application mentioned above use simulation
to quickly generate huge amounts of data. However, rather than eliminating
the problem altogether, simulation merely transforms the data problem into
a computational problem (thus further increasing the computational bur-
dens described in Limitation b further below). For example, the CBMPI10 10 Scherrer et al. (2015)

algorithm requires over 20 million calls to a Tetris simulator to generate the
data required to learn eight parameters of a linear expert policy. An even
more extreme example is AlphaGo Zero,11 which learned its policy using in- 11 Silver et al. (2017b)

formation gathered throughout 29 million games of Go.12 12 It was estimated that the experiments re-
quired approximately 4.8 million TPU com-
putation hours (Rocke, 2019).�e cost of one
TPU computation hour as of 2021 is about
$4.50, resulting in estimated computational
costs of over $20 million to replicate the ex-
periments.

Albeit its horrendous computational costs, simulation can be an e�ective
way to create enough high-quality data for learning purposes. In many real-
world domains, however, the agent does not have access to an accurate or
cheap-enough simulator,13 underpinning the need for reinforcement learn-

13 �ink, for example, of a drug-discovery ap-
plication, in which e�ects and side-e�ects of
a new drug can only be observed by giving
the drug to biological organisms due to a lack
of accurate simulations of entire biological or-
ganisms.

ing algorithms that can learn useful behavior from few(er) data points.

b. Reward optimization is too computationally expensive in large action spaces.
When faced with a decision, a reward-maximizing agent has to consider and
evaluate every available action in order to select the action that is believed
to maximize reward.�e total amount of computational resources required
for one such deliberation is thus proportional to the product of the number
of available actions and the computational resources required to evaluate one
action. �e values of both variables have to be kept small for the reward-
maximizing approach to be feasible.

As described in Limitation a, recent reinforcement learning algorithms have
seen a rise in the complexity of action-evaluation functions, and thus a rise
in the need for computational resources to evaluate a single action. To keep
learning feasible, these algorithms were employed and evaluated in environ-
ments with relatively low-dimensional action spaces. For example, a maxi-
mum number of 17 actions is available in any of the video games from the
popular “ATARI 2600” evaluation benchmark;14 the maximum action size 14 Bellemare et al. (2013)

in the game of Go with original board size is 361.

�e “action space of real life”, on the other hand, is enormous. Not only do
we have thousands of possible actions to choose from in every instant, but
the identities of available actions change between di�erent moments and sit-
uations. Moreover, the number of available actions increases even further if
temporally extended action plans (also called macro actions15 or skills16) are 15 Amarel (1968)

16 �run and Schwartz (1995) and Şimşek
(2008)

considered as well. In many real-life domains, it is currently simply imprac-
ticable to consider and evaluate all actions before making a decision.

18

�is dissertation addresses the limitations just described by exploring approaches
to reinforcement learning that dispose with the idea of (approximate) reward
optimization at all times. Instead, the approaches explored here build on the
notion of bounded rationality, which is introduced in the next section.

1.2 notions of rational behavior

To act rationally is “to do the right thing”.17 Di�erent notions of rationality 17 Russell and Norvig (2010, p. 37)

therefore refer to di�erent interpretations of what it means to do the right thing.
�e reward-maximizing approach to reinforcement learning presented in

the previous section views a rational agent as one that behaves optimally in
every instant. �is view is consistent with the prevalent paradigm of ratio-
nal choice in economics,18 game theory,19 and statistical decision theory:20 the 18 Stigler (1961)

19 Von Neumann and Morgenstern (1944)
20 Savage (1972)

maximum expected utility principle postulates that decisionmakers should con-
sider all available alternatives and choose the alternative that maximizes a sub-
jective expected utility function. In arti�cial intelligence research, this notion
of rationality is called perfect rationality.21 In economics, perfect rationality 21 Russell and Norvig (2010)

has also been called objective rationality22, full rationality23, or simply rational 22 Simon (1956)
23 Selten (1998)choice theory.

Rationality plays a key role in economics, where one of the main goals is to
model how economic entities (people, �rms, and countries) react to economic
policy interventions. For example, it may be of interest to estimate the change
in tax revenue of a country if the value-added tax is increased by, say, 5%. One
way to estimate the overall e�ect is to �rst estimate how each individual would
change its consumption behavior as a function of the changed tax rate, followed
by an aggregation of the individual results. Neo-classical economic theory is
built on the assumption of perfect rationality and thus assumes that individuals
behave according to the maximum expected utility principle. In our tax exam-
ple this wouldmean that every individual reconsiders their economic choices by
recalculating the long-term utilities of all available alternatives under the mod-
i�ed tax rate before making any new economic decisions. Is this an accurate (or
at least useful) assumption to make?
It is not according toHerbert Simon,24 who in the 1950s considered themax- 24 Apart from being a Nobel Prize-winning

economist, cognitive psychologist and polit-
ical scientist, Herbert Simon would later also
become a pioneering �gure in arti�cial intel-
ligence research.

imum expected utility principle to be an inadequate assumption to describe
human economic decision making. Simon (1957, p. 198) formulated, what he
called, the principle of bounded rationality:

�e capacity of the human mind for formulating and solving complex problems
is very small compared with the size of the problems whose solution is required
for objectively rational behavior in the real world—or even for a reasonable ap-
proximation to such objective rationality.

According to Simon, human decision making is instead a search process that is
guided by aspiration levels. An aspiration level is a value of some objective func-
tion that must be reached or surpassed by a satisfactory decision alternative.25 25 �e term “aspiration level” stems from ex-

perimental psychology, where similar con-
cepts have been studied before Simon’s work
(for example, see Lewin et al., 1944; Sauer-
mann and Selten, 1962).

Alternatives are considered sequentially and the search is stopped as soon as

overview 19

a satisfactory alternative is found, a process for which Simon coined the term
satis�cing.26 26 Simon (1959)

More generally, a model of bounded rationality is any predictive model that
takes into consideration the computational limitations of the agent’s mind and
the limited data available to estimate the model’s parameters. Many models are
boundedly rational by deliberately ignoring some of the available information
or combining di�erent pieces of information in simple ways, for example, by
giving them equal weight. O�en these models do not need to be de�ned as the
solution to a mathematical optimization problem but instead can be described
by simple, cognitively plausible processes such as counting, ordering, and pair-
wise comparisons of values.27 27 Katsikopoulos et al. (2020)

Simply put, “doing the right thing” for a boundedly rational, satis�cing28 28 �e term “satis�cing” will have two mean-
ings throughout this dissertation. It will
refer to Simon’s satis�cing decision making
strategy that uses aspiration levels to decide
whether an alternative is deemed satisfactory
or not. More generally, “satis�cing” will also
be understood as an alternative to “optimiz-
ing”.

agent is to �nd a “good enough” solution, whereas the perfectly rational, opti-
mizing agent aims to �nd “the best” solution.

1.3 bounded rationality in artificial intelligence

Simon’s critique of perfect rationality spawned an ongoing debate about which
notion of rationality is best suited to describe human decision making in both
economics29 and psychology.30 �e goal proclaimed at the beginning of this 29 See Chapters 1 and 2 of Gigerenzer and Sel-

ten (2002) for a history of bounded rationality
in both economics and psychology.
30 Gigerenzer et al. (1999) and Oaksford and
Chater (2007)

chapter, however, was to build agents that produce useful behavior, not to im-
itate human decision making—so why should we even care about descriptive
models of human decision making?
Humans and animals are still the most resource-e�cient general-purpose

decision makers in complex real-world environments known to us. �is re-
source e�ciency is unlikely to be due to superior computational power or data-
storage capacities in biological brains (when compared to today’s supercomput-
ers), but rather due to the successful adaption of our decision-making strategies
to real-world decision environments throughout the course of evolution. If we
manage to transfer elements of these decision-making strategies from biologi-
cal organisms to arti�cial decisionmakers, we can hope to increase the resource
e�ciency of the latter.
One has to keep in mind that the physical architectures of most of today’s

arti�cial agents (that is, computers) are substantially di�erent in form and func-
tion from biological decision making architectures such as animal brains. Try-
ing to imitate and implement human decision-making strategies on the level
of bio-chemical processes present in biological brains is a daunting task. We
therefore step up several levels of abstraction and try to make the transfer from
the biological to the arti�cial on the level of cognitive processes.
Economics and psychology have brought forward a large canon of cognitive

decisionmakingmodels, including some that are inspired by perfect rationality
(such as, for example, expected utility theory or prospect theory31) and some 31 Kahneman and Tversky (2013)

that are inspired by bounded rationality (such as Simon’s satis�cing strategy or
fast-and-frugal decision heuristics32). 32 Gigerenzer and Goldstein (1996) and

Gigerenzer et al. (1999). See also Section 2.2

20

As outlined in the previous two sections, modern reinforcement learning
algorithms are predominantly built on the idea of perfect rationality. In this
dissertation, I substitute various parts of reinforcement learning algorithms that
are inspired by themaximumexpected utility principle withmodels of bounded
rationality.�is leads to the following thesis, which I aim to defend in this dis-
sertation.

Models of bounded rationality can inform reinforcement learning algorithms
to be more resource-e�cient.

�e following section outlines the contents of this dissertation and summarizes
the contributions that provide supporting evidence for my thesis.

1.4 outline & contributions

�is introductory part of the dissertation is concluded by Chapter 2, which pro-
vides technical background and discusses existing work that accounts for lim-
ited resources in arti�cial intelligence research.

�e rest of the dissertation is broken into two largely independent parts.
�e two approaches presented in these parts build on di�erent types of bound-
edly rationalmodels from the literature to address di�erent resource limitations
present in sequential decision-making processes.

▸ Part II: Boundedly rational action evaluation. In this part I explore
the usefulness of boundedly rational predictive models as function approxima-
tors in reinforcement learning. �is part addresses Limitation a by reducing
the amount of data required to learn a useful policy.
Using function approximation to approximate a policy or value function in

reinforcement learning can be interpreted as a series of supervised learning
tasks, with the particularity that the training data in a given iteration is cre-
ated by the agent itself, using the policy learned in the previous iteration. Most
reinforcement algorithms in the literature use data-hungry supervised learning
models such as unconstrained linear functions or neural networks for function
approximation.33 In supervised learning these complexmodels can produce ex- 33 Sutton and Barto (2018, Part II)

cellent predictions when they are trained on large amounts of high quality data.
However, a reinforcement learning agent that uses such a complex function ap-
proximator throughout the entire learning process fails to take into account that
amount and quality of data is limited in the beginning of the learning process.
�is can result in a slow and tedious learning process as described inmore detail
in Limitation a further above.
A growing body ofwork has produced evidence thatmanymodels of bounded

rationality can rival, and sometimes outperform,more complex statisticalmod-
els across a wide range of supervised learning tasks.34 �is leads to the follow- 34 Czerlinski et al. (1999), Brighton (2006),

Şimşek andBuckmann (2015), Buckmann and
Şimşek (2017), and Katsikopoulos et al. (2018,
2020). See also Section 3.3 for a review of
models of bounded rationality in the regres-
sion task.

ing questions. How can we use existing models of bounded rationality from su-
pervised learning to create boundedly rational function approximation architec-

overview 21

tures for reinforcement learning? Does a boundedly rational reinforcement learn-
ing agent require fewer data to learn a useful policy than agents that do not take
resource limitations into account?

�e three chapters contained in this part present one approach to fruitfully
integrate existing models of bounded rationality into reinforcement learning.
In the �rst two chapters I address a series of questions on predictive models of
bounded rationality in the traditional supervised learning setting.�e insights
obtained in these two chapters then directly inform the development of the re-
inforcement learning algorithm presented in the third chapter of this part.

InChapter 3 I start with the questions: How accurate are simple predictive mod-
els of bounded rationality? When do they outperform statistical methods from
the machine learning literature? I report the results of a large-scale empirical
analysis of simple, boundedly rational regression models, including equal-
weighting models and single-predictor models, on 60 real-world data sets.
�e main �ndings are as follows. Individual simple regression models rou-
tinely outperformed more complex statistical regression models, especially
on small training data sets. Occasionally, simple models also performed on
par with complex models on larger training sets. On average, however, the
simple models failed to reach the mean predictive accuracy of their more
complex counterparts on large training sets.

In the context of reinforcement learning, these results suggest a solution
in which the agent adapts the function approximation architecture to the
amount and quality of data that is available: in the beginning of learning,
when data is scarce, it might be bene�cial to rely on a boundedly rational
model. In later stage of the learning process, when more and higher-quality
data is available, the agent might bene�t from relying on a more data-driven
statistical model as function approximation architecture.

It is sensible to assume that the amount and quality of data available to a re-
inforcement learning agent increases gradually during the learning process.
�is suggests the use of a function approximation architecture that gradu-
ally increases its reliance on the data accumulated (as opposed to a function
approximator that makes a binary switch from a simple boundedly rational
to a complex data-driven model at a certain point), leading to the question:
How can such a transition be implemented?

In Chapter 4 I propose a regularized linear model, called shrinkage toward
equal weights (or STEW), that can �exibly interpolate between a strongly
constrained equal-weighting solution and the fully data-driven, unconstrained
solution (that is, ordinary least squares in the context of a regression task).
Apart from the use case as a smooth transition function between a bound-
edly rational model and a fully data-driven model (followed up on in Chap-
ter 5, see below), the STEW regularization term is useful in the traditional
supervised learning setting, as well.

22

�e STEW regularization term provides a way of fruitfully incorporating a
prevalent form of prior knowledge into the learning procedure: feature di-
rections.�e direction of a feature indicates whether the feature is associated
positively or negatively with the response variable. In many real-world ap-
plications, feature directions are known or can be estimated with ease.35 For 35 I discuss this claim in further detail in Sec-

tion 2.2.1 in the context of single-shot decision
making. In Section 5.3, I present an algorithm
that learns feature directions in sequential de-
cision making problems.

instance, consider the task of predicting an apartment’s rent price and as-
sume we have access to a feature that indicates whether the apartment has
hot water or not (yes = 1, no = 0). Most people would assume that this fea-
ture is correlated positively with the price variable, or in other words, that
the feature has positive direction.

I present theoretical and empirical evidence that a linear regression model
with STEW regularization can bene�t from this type of prior knowledge in
ways that other regularized linearmodels cannot. When information on fea-
ture directions is available, STEW outperforms existing regularized models
including the non-negative Lassomodel, which also incorporates knowledge
about feature directions. Averaged across 13 real-world data sets, STEW reg-
ularization yields an error reduction of up to 20% compared to other regular-
ized models on small training sets and performs as well as the other models
on large training size sets.

Finally, in Chapter 5, I integrate ideas and �ndings from the two previous
chapters to construct a new reinforcement learning algorithm, called iter-
ative policy space expansion, or IPSE.�e IPSE algorithm adapts its function
approximation architecture to the amount and quality of data available. In
the beginning of the learning process—when data is scarce—the algorithm
learns a simple yet e�ective equal-weighting policy that has a catalytic ef-
fect on the learning process and helps the agent to quickly emerge from the
gridlock situation described in Limitation a. In later stages of learning—
when more and higher-quality data becomes available—the STEW regular-
ization term is used to gradually transform the function approximator from
an equal-weighting model to an unconstrained linear model.

When applied to learning how to play the game of Tetris, the IPSE algo-
rithm is substantially more resource-e�cient than reinforcement learning
algorithms that use a complex function approximator throughout the en-
tire learning process. Speci�cally, a policy learned by the IPSE algorithm
a�er 400 iterations36 clears on average more than twice as many lines as the 36 �is corresponds to a training set size of

400 Tetris positions.policies learned by competing algorithms using the same amount of train-
ing data. Conversely, to achieve the level of performance of the best rivaling
algorithm a�er 400 iterations, the IPSE algorithm requires around 50 itera-
tions, or in other words, about an eighth of the data.

▸ Part III: Satisficing in reinforcement learning. �is part revolves
directly around Herbert Simon’s satis�cing strategy for decision making and
applies it to sequential decision making. �is part addresses Limitation b by

overview 23

reducing the number of actions that have to be evaluated during each decision-
making process.
In Chapter 6 I formulate a satis�cing strategy for use in Markov decision

processes. Similar to Simon’s original work, the ξ-satis�cing policy considers
actions sequentially and selects the �rst action whose value is larger than some
pre-de�ned aspiration level ξ. I study how this policy trades o� computational
e�ort against expected quality of the selected action as a function of the aspira-
tion level.

�e main challenge for a satis�cing agent lies in determining a suitable aspi-
ration level at every decision stage of theMarkov decision process. In particular,
the e�ort required for this deliberation process should not o�set the computa-
tional savings gained by using the satis�cing policy in the �rst place.
I develop three computationally simple aspiration adaption rules to set as-

piration levels dynamically. �e �rst rule is called aspiration tracking. Under
the strong conditions that the Markov decision process is deterministic and the
agent has access to an optimal value function, a satis�cing agent using aspiration
tracking follows an optimal policy (in terms of expected return) and requires
provably less expected e�ort than the greedy policy.
I provide examples that illustrate how aspiration tracking fails to produce

these results when these conditions are not met.�is leads to the development
of two other aspiration adaption rules, called value tracking and valved value
tracking, which are more robust to approximation errors in the optimal value
function than the aspiration tracking rule. I evaluate all three aspiration adap-
tion rules in the game Lunar-Lander, where the optimal value function is ap-
proximated by an arti�cial neural network. On average, a satis�cing agent using
valved value tracking reaches the same return as the greedy policy while requir-
ing around 76% of the greedy policy’s e�ort.

Finally, this dissertation concludes with Chapter 7, which discusses the contri-
butions of this dissertation.

1.5 publications

�is dissertation produced three publications.

• Jan M. Lichtenberg and Özgür Şimşek (2017). “Simple regression models”.
In: Imperfect Decision Makers: Admitting Real-World Rationality. PMLR 58,
pp. 13–25.

• JanM. Lichtenberg and Özgür Şimşek (2019b). “Regularization in directable
environments with application to Tetris”. In: Proceedings of the 36th Interna-
tional Conference on Machine Learning, pp. 3953–3962.

• Jan M. Lichtenberg and Özgür Şimşek (2019a). Iterative policy-space expan-
sion in reinforcement learning. arXiv: 1912.02532 [cs.LG]. �is article was

https://arxiv.org/abs/1912.02532

24

presented at the 2019 NeurIPS workshop on Biological and Arti�cial Rein-
forcement Learning.

Chapter 3 is based on Lichtenberg and Şimşek (2017), Chapter 4 is based on
Lichtenberg and Şimşek (2019b), and Chapter 5 is based on Lichtenberg and
Şimşek (2019a,b).

2
BACKGROUND & RELATED L ITERATURE

�e two main elements of this dissertation—reinforcement learning and mod-
els of bounded rationality—originate from di�erent research areas: computer
science and economics, respectively. Furthermore, whereas reinforcement learn-
ing is concernedwith sequential decisionmaking,most existingmodels of bounded
rationality were developed for (and studied in) single-shot decision-making or
prediction tasks. It is therefore of little surprise that both research communities
o�en use di�erent names, conventions, and notation for similar concepts.
In this chapter I aim to provide a framework that allows to study models of

bounded rationality in reinforcement learning, using a single language and a
common set of notation. �e binding element between both �elds in Part II
is the �eld of supervised learning, which generally is concerned with learning
a function that maps an input to an output from existing input-output pairs.
Supervised learning plays a fundamental role in many modern reinforcement
learning algorithms. At the same time, we can formulate many existing models
of bounded rationality as supervised learningmodels.�is allows a straightfor-
ward integration of models of bounded rationality (formulated as supervised
learning models) into reinforcement learning.
It is for its function as binding element that I start by introducing supervised

learning in Section 2.1. In Section 2.2 I present existing models of bounded
rationality, formulated as supervised learning models. In Section 2.3 I provide
a brief introduction to reinforcement learning. Finally, in Section 2.4 I discuss
existing work that uses concepts of bounded rationality in machine learning.

2.1 supervised learning

Supervised learning is learning an input-output association from data. For ex-
ample, the output variable that wewish to predict (also called response) could be
a quantitative measure of disease progression for diabetes, and the input vari-
ables that we would like to base our predictions on (also called features) could
be a collection of measurements describing the patient, such as several blood
serum measurements, age, body mass index, sex, and average blood pressure.1 1We will indeed work with such a data set

in later sections. �e Diabetes data set is de-
scribed in more detail in Appendix C.

Assume that this measure of disease progression is highly expensive or di�cult
to obtain.�en it would be bene�cial to have access to a prediction model that
can estimate the progression of diabetes in a patient based on the other features,

26

which are much easier (or cheaper) to measure.
To learn such a prediction model, supervised learning requires a training

data set, which contains both the feature and response values for a collection
of observations (such as patients in our diabetes example). During a typical
training procedure, the learning algorithm produces response estimates for the
given feature inputs and compares the resulting estimates to the true response
values from the training data.�emodel parameters are then adjusted such that
the estimates get closer to the true values. Supervised learning is called “super-
vised” because the learning process is guided by the presence of the response
variable in the training data. Di�erent learning algorithms (some of which are
described further below) use the training data in di�erent ways.
Once the model is trained, it can be used to predict the response for pre-

viously unseen objects, for which only the feature values are known. A good
model is one that generalizes well to unseen data, that is, a model that accu-
rately predicts the response values of objects that were not used to train the
model. In our diabetes example, these would be newly incoming patients with
diabetes symptoms.
Formally, a model f parametrized by a vector of parameters β predicts the

value of the response y ∈ Y by
ŷ = f (x , β), (2.1)

where ŷ ∈ Y is the predicted value and x = (x1 , . . . , xp) is a vector of p real-
valued2 features.�e training set of n observations is denoted by 2 �is includes that the features could be bi-

nary (for example, the answer to a yes/no
question). In some areas of statistical ma-
chine learning, it is important to distinguish
between binary, categorical, and continuous
(real-valued) features. Here we treat binary
features as if they were continuous.

D = {(y i , x i), i = 1, . . . , n},
where (y i , x i) it the i-th observation. Wewill sometimes usematrix notation to
denote the training datamore compactly asD = (y, X), where y is the response
vector of length n, and X is the n × p feature matrix.

2.1.1 Example data for supervised learning: Rent

Here I introduce a real-world data set that will be used as an example for super-
vised learning throughout this dissertation. �e Rent data set3 contains infor- 3 Fahrmeir et al. (2012) and Schauberger and

Tutz (2014)mation about 2053 apartments in Munich, Germany.�e objective is to predict
the rent in € per m2 for an apartment, based on eight features including the
number of rooms, the year of construction (in years), and whether the apartment
has warm water (yes = 1, no = 0). Table 2.1 shows the rent per m2 and the values
of �ve features for the �rst 10 apartments of the rent data set. A more detailed
description about the Rent data set (and about all other supervised learning data
sets used in this dissertation) can be found in Appendix C.

2.1.2 Prediction tasks

Supervised learning can be applied to various prediction tasks.�ese prediction
tasks di�er from each other in the type of response variable they predict or in
the number of observations that form an input.

background & related literature 27

rentm size rooms year good . . . kitchen
10.90 68 2 1918 yes . . . no
11.01 65 2 1995 yes . . . no
8.38 63 3 1918 yes . . . no
8.52 65 3 1983 no . . . no
6.98 100 4 1995 yes . . . yes
11.55 81 4 1980 no . . . no
3.72 55 2 1924 no . . . no
5.40 79 3 1924 no . . . no
8.58 52 1 1957 no . . . no
4.95 77 3 1948 no . . . no
. .

Table 2.1: First 10 observations (apartments)
of the Rent data set. Each apartment (line) is
described by the rent in € perm2 (rentm), the
size of the apartment in m2 , the number of
rooms, the year of construction, whether the
apartment is situated in a upperclass neigh-
borhood (good), and whether the apartment
has an upper-market built-in kitchen.

In what follows, I present the four prediction tasks that will play a role in this
dissertation. I will motivate and explain these prediction tasks by asking four
di�erent hypothetical questions about the Rent data set.

x

<latexit sha1_base64="GhLNGuBohUYYJJ/sW0pPmY0501o=">AAACSnicdVDLSgMxFM3U+qqvVpduglVwVWbqo+2u4MaNUNFWoR0kk2Y0No8hyYh16D+41W/yB/wNd+LGRCu0ohcCh3PPvbnnRAmj2vj+q5ebyc/OzS8sFpaWV1bXiqX1jpapwqSNJZPqMkKaMCpI21DDyGWiCOIRIxfR4Mj1L+6I0lSKczNMSMjRtaAxxchYqtOLeHY/uiqW/YrvH1YbNehA7aBadyDYO2j4MLCMqzIYV+uq5FV6fYlTToTBDGndDfzEhBlShmJGRoVeqkmC8ABdk66FAnGiw+zr3BHcsUwfxlLZJwz8YicnMsS1HvLIKjkyN/p3z5F/9bqpiethRkWSGiLw90dxyqCR0HmHfaoINmxoAcKK2lshvkEKYWMTmtrkdrM4zE6osDG1lJyylEV8VNiBk4wbSNDDL92JOLM+JHMJ/8QI/wedaiXYrzRO98vN7XHWC2ATbIFdEIAaaIJj0AJtgMEteARP4Nl78d68d+/jW5rzxjMbYKpy+U9u0LP5</latexit>

f

<latexit sha1_base64="aViadXtn0LxdzGenPfMme4RlItc=">AAACRXicdVDLTgIxFO34RHyBLt00IokrMoMgsCNx44YEoiAJTEindLSh007ajglO+AK3+k1+gx/hzrjVDmACRG/S5OTcc2/vOV7IqNK2/W6trW9sbm2ndtK7e/sHh5nsUUeJSGLSxoIJ2fWQIoxy0tZUM9INJUGBx8idN7pK+nePRCoq+K0eh8QN0D2nPsVIG6rlDzI5u2Dbl8VaBSagUi5WE+BclGs2dAyTVA7MqznIWoX+UOAoIFxjhpTqOXao3RhJTTEjk3Q/UiREeITuSc9AjgKi3Hh66QTmDTOEvpDmcQ2n7OJEjAKlxoFnlAHSD2q1l5B/9XqR9qtuTHkYacLx7CM/YlALmNiGQyoJ1mxsAMKSmlshfkASYW3CWdqU7Ga+GzcoNwk1pViyFHvBJJ2Hi0wyEKKnFV2D3xgfgk1Mwr8xwv9Bp1hwSoVaq5Srn82zToETcArOgQMqoA6uQRO0AQYEPIMX8Gq9WR/Wp/U1k65Z85ljsFTW9w+JjLKR</latexit>

is input of

predicts by

R

<latexit sha1_base64="C1eJsaRYUfcoGSQjMdSp9edT5A8=">AAACTnicdVDLTgIxFO3gC/EFunTTiCauyAyKwI7EjRsSfCBEmJhO6UBjp520HROc8Bdu9Zvc+iPujLaKiRC9SZOTc8+9vecEMaNKu+6rk1lYXFpeya7m1tY3Nrfyhe1rJRKJSRsLJmQ3QIowyklbU81IN5YERQEjneDu1PY790QqKviVHsfEj9CQ05BipA1104+QHgVBejG5zRfdkuuelOtVaEG1Uq5Z4B1V6i70DGOrCKbVui04pf5A4CQiXGOGlOp5bqz9FElNMSOTXD9RJEb4Dg1Jz0COIqL89OvkCTwwzACGQprHNfxif0+kKFJqHAVGaU9U8z1L/tXrJTqs+SnlcaIJx98fhQmDWkDrHw6oJFizsQEIS2puhXiEJMLapDSzye5moZ82KTdRtaSYsZQG0SR3AH8zdiBGD3O6Jr80PgSzCf/ECP8H1+WSd1yqnx8XG/vTrLNgF+yBQ+CBKmiAM9ACbYABB4/gCTw7L86b8+58fEszznRmB8xUJvsJ1Ia1mg==</latexit>

ŷ

<latexit sha1_base64="17LTVXKLai1cZxVjjcD9K/iG4n0=">AAACS3icdVDLTgIxFO3gC/GJLt00IokrMoMosCNx44YEo4AJTEyndKSh007ajsk44SPc6jf5AX6HO+PCFjERozdpcnLuubf3nCBmVGnXfXVyS8srq2v59cLG5tb2zm5xr6dEIjHpYsGEvAmQIoxy0tVUM3ITS4KigJF+MDm3/f49kYoKfq3TmPgRuuM0pBhpQ/WHY6SzdHq7W3IrrntWbdahBfXTasMC7+S06ULPMLZKYF6d26JTGY4ETiLCNWZIqYHnxtrPkNQUMzItDBNFYoQn6I4MDOQoIsrPZvdOYdkwIxgKaR7XcMb+nMhQpFQaBUYZIT1Wv3uW/Ks3SHTY8DPK40QTjr8+ChMGtYDWPBxRSbBmqQEIS2puhXiMJMLaRLSwye5moZ+1KTc5daRYsJQF0bRQhj8ZOxCjh1+6Nr8yPgSzCX/HCP8HvWrFq1Wal7VS62iedR4cgENwDDxQBy1wATqgCzCYgEfwBJ6dF+fNeXc+vqQ5Zz6zDxYqt/IJZy+0cg==</latexit>

<latexit sha1_base64="iTtqUp7T/vxS4SRxk3soomXhfvg=">AAACVnicdVDLSgMxFM2Mj9b6murSTbAIrspMtVZ3BTduCvVRFdqhZNKMhmaSIckUxqF/4la/SX9GTGoFK3ohcDjn3Jt7T5QyqrTvvzvu0vLKaqm8Vlnf2Nza9qo7t0pkEpMeFkzI+wgpwignPU01I/epJCiJGLmLxudWv5sQqajgNzpPSZigB05jipE21NDzcjigHA4SpB+jqLiaDr2aX/f9k8ZZC1rQajZOLQiOmmc+DAxjqwbm1R1WnfpgJHCWEK4xQ0r1Az/VYYGkppiRaWWQKZIiPEYPpG8gRwlRYTFbfQoPDDOCsZDmcQ1n7M+OAiVK5UlknHZF9Vuz5F9aP9PxaVhQnmaacPz1UZwxqAW0OcARlQRrlhuAsKRmV4gfkURYm7QWJtnZLA6LDuUmsq4UCycVUTKtHMCfjG1I0dMvX4dfmzsEswl/xwj/B7eNetCs+5fHtTacZ10Ge2AfHIIAtEAbXIAu6AEMJuAZvIBX5835cFfc0pfVdeY9u2ChXO8TpVG16Q==</latexit>

y ∈ R

�

<latexit sha1_base64="uUsQh/P2uzFIz8YC/kqUxisRL/4=">AAACRXicdVDLSgMxFM3Ud321unQTrAVXw0x9tN0V3LgRWrS20A4lk2ba0EwyJBmhDvMFbvWb/AY/wp241UytYEUvBA7nnntzz/EjRpV2nBcrt7S8srq2vpHf3Nre2S0U926ViCUmbSyYkF0fKcIoJ21NNSPdSBIU+ox0/MlF1u/cEamo4Dd6GhEvRCNOA4qRNlTLGRRKju0455V6FWagelapZcA9Oas70DVMViUwr+agaNn9ocBxSLjGDCnVc51IewmSmmJG0nw/ViRCeIJGpGcgRyFRXjK7NIVlwwxhIKR5XMMZ+3MiQaFS09A3yhDpsfrdy8i/er1YBzUvoTyKNeH466MgZlALmNmGQyoJ1mxqAMKSmlshHiOJsDbhLGzKdrPAS64oNwk1pViwlPhhmi/Dn0w2EKH7X7orfm18CJaahL9jhP+D24rtntr11mmpcTTPeh0cgENwDFxQBQ1wCZqgDTAg4AE8gifr2Xq13qz3L2nOms/sg4WyPj4BJBayWw==</latexit>

<latexit sha1_base64="siqYKEjSxtNSOTnn8QfjTNkN6hQ=">AAACRXicdVDLTgIxFO34RHyBLt00ookrMoMisCNx44YEoiAJTkindLCh007ajglO5gvc6jf5DX6EO+NWO4AJEL1Jk5Nzz72953gho0rb9ru1srq2vrGZ2cpu7+zu7efyBx0lIolJGwsmZNdDijDKSVtTzUg3lAQFHiN33ugq7d89Eqmo4Ld6HBI3QENOfYqRNlTL6ecKdtG2L0u1CkxBpVyqpsA5L9ds6BgmrQKYVbOft4r3A4GjgHCNGVKq59ihdmMkNcWMJNn7SJEQ4REakp6BHAVEufHk0gSeGmYAfSHN4xpO2PmJGAVKjQPPKAOkH9RyLyX/6vUi7VfdmPIw0oTj6Ud+xKAWMLUNB1QSrNnYAIQlNbdC/IAkwtqEs7Ap3c18N25QbhJqSrFgKfaCJHsK55l0IERPS7oGvzE+BEtMwr8xwv9Bp1R0ykW7dVGon8yyzoAjcAzOgAMqoA6uQRO0AQYEPIMX8Gq9WR/Wp/U1la5Ys5lDsFDW9w8jabJU</latexit>� 2
<latexit sha1_base64="soWqB8dq+ifM5TugeGkqpE1j36c=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24sWSqte1OcONGqI/aQjuUTJppg5lkSDJCHfoHbvVb/BU37sStn2BGK1jRA4HDuY+ce/yIM20QenYyM7Nz8wvZxdzS8srq2np+41rLWBHaJJJL1faxppwJ2jTMcNqOFMWhz2nLvzlJ661bqjST4sqMIuqFeCBYwAg2VrrYd3vrBVRC6Khcr8KUVCvlWkrcg0odQdcqKQpggkYv72x3+5LEIRWGcKx1x0WR8RKsDCOcjnPdWNMIkxs8oB1LBQ6p9pJPq2NYtEofBlLZJwz8VH9OJDjUehT6tjPEZqh/11Lxr1onNkHNS5iIYkMF+fooiDk0EqZ3wz5TlBg+sgQTxaxXSIZYYWJsOlOb0t088JIzJmxEDSXHuSL8aSNtiPCdnDo1OROX1rfkY5vod2zwf3JdLrmVEjo/LBzvTrLNgi2wA/aAC6rgGJyCBmgCAgJwDx7Ao/PkvDivzttXa8aZzGyCKTjvH5Q8q+U=</latexit>−�

Figure 2.1: Regression. �e model f observes
the features of one object and predicts the ob-
ject’s response value y ∈ R by ŷ ∈ R. In this
example, the predicted value is ŷ = 1.5.

▸ Regression. In regression, the goal is to predict a real-valued (or continuous)
variable of a single observation. �at is, the space of the response variable isY = R. Figure 2.1 sketches input and output of a regression model. Because
rent in € per m2 is a continuous variable, the Rent data set naturally suggests
the following regression problem:

“How high is the rent for this apartment?”

▸ Classification In classi�cation, the goal is to which category out of a �xed
set of k classes or categories an observation belongs to. �ese classes are o�en
represented mathematically by arbitrarily assigning a number form 1 to k to
each class, resulting in Y = {1, . . . , k}. Figure 2.2 sketches input and output of
a classi�cation model.
On the Rent data set, we can build a classi�cation problem by de�ning a

“categorical rent variable”, called rent category, as follows (the chosen categories
and thresholds are arbitrary and chosen for illustrative purposes only):

rent category =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

“high” if rent per m2 > 12;
“middle” if 12 ≥ rent per m2 > 7;
“low” if 7 ≥ rent per m2.

x

<latexit sha1_base64="GhLNGuBohUYYJJ/sW0pPmY0501o=">AAACSnicdVDLSgMxFM3U+qqvVpduglVwVWbqo+2u4MaNUNFWoR0kk2Y0No8hyYh16D+41W/yB/wNd+LGRCu0ohcCh3PPvbnnRAmj2vj+q5ebyc/OzS8sFpaWV1bXiqX1jpapwqSNJZPqMkKaMCpI21DDyGWiCOIRIxfR4Mj1L+6I0lSKczNMSMjRtaAxxchYqtOLeHY/uiqW/YrvH1YbNehA7aBadyDYO2j4MLCMqzIYV+uq5FV6fYlTToTBDGndDfzEhBlShmJGRoVeqkmC8ABdk66FAnGiw+zr3BHcsUwfxlLZJwz8YicnMsS1HvLIKjkyN/p3z5F/9bqpiethRkWSGiLw90dxyqCR0HmHfaoINmxoAcKK2lshvkEKYWMTmtrkdrM4zE6osDG1lJyylEV8VNiBk4wbSNDDL92JOLM+JHMJ/8QI/wedaiXYrzRO98vN7XHWC2ATbIFdEIAaaIJj0AJtgMEteARP4Nl78d68d+/jW5rzxjMbYKpy+U9u0LP5</latexit>

f

<latexit sha1_base64="aViadXtn0LxdzGenPfMme4RlItc=">AAACRXicdVDLTgIxFO34RHyBLt00IokrMoMgsCNx44YEoiAJTEindLSh007ajglO+AK3+k1+gx/hzrjVDmACRG/S5OTcc2/vOV7IqNK2/W6trW9sbm2ndtK7e/sHh5nsUUeJSGLSxoIJ2fWQIoxy0tZUM9INJUGBx8idN7pK+nePRCoq+K0eh8QN0D2nPsVIG6rlDzI5u2Dbl8VaBSagUi5WE+BclGs2dAyTVA7MqznIWoX+UOAoIFxjhpTqOXao3RhJTTEjk3Q/UiREeITuSc9AjgKi3Hh66QTmDTOEvpDmcQ2n7OJEjAKlxoFnlAHSD2q1l5B/9XqR9qtuTHkYacLx7CM/YlALmNiGQyoJ1mxsAMKSmlshfkASYW3CWdqU7Ga+GzcoNwk1pViyFHvBJJ2Hi0wyEKKnFV2D3xgfgk1Mwr8xwv9Bp1hwSoVaq5Srn82zToETcArOgQMqoA6uQRO0AQYEPIMX8Gq9WR/Wp/U1k65Z85ljsFTW9w+JjLKR</latexit>

is input of

<latexit sha1_base64="siqYKEjSxtNSOTnn8QfjTNkN6hQ=">AAACRXicdVDLTgIxFO34RHyBLt00ookrMoMisCNx44YEoiAJTkindLCh007ajglO5gvc6jf5DX6EO+NWO4AJEL1Jk5Nzz72953gho0rb9ru1srq2vrGZ2cpu7+zu7efyBx0lIolJGwsmZNdDijDKSVtTzUg3lAQFHiN33ugq7d89Eqmo4Ld6HBI3QENOfYqRNlTL6ecKdtG2L0u1CkxBpVyqpsA5L9ds6BgmrQKYVbOft4r3A4GjgHCNGVKq59ihdmMkNcWMJNn7SJEQ4REakp6BHAVEufHk0gSeGmYAfSHN4xpO2PmJGAVKjQPPKAOkH9RyLyX/6vUi7VfdmPIw0oTj6Ud+xKAWMLUNB1QSrNnYAIQlNbdC/IAkwtqEs7Ap3c18N25QbhJqSrFgKfaCJHsK55l0IERPS7oGvzE+BEtMwr8xwv9Bp1R0ykW7dVGon8yyzoAjcAzOgAMqoA6uQRO0AQYEPIMX8Gq9WR/Wp/U1la5Ys5lDsFDW9w8jabJU</latexit>� 2 3 k
…ŷ

<latexit sha1_base64="17LTVXKLai1cZxVjjcD9K/iG4n0=">AAACS3icdVDLTgIxFO3gC/GJLt00IokrMoMosCNx44YEo4AJTEyndKSh007ajsk44SPc6jf5AX6HO+PCFjERozdpcnLuubf3nCBmVGnXfXVyS8srq2v59cLG5tb2zm5xr6dEIjHpYsGEvAmQIoxy0tVUM3ITS4KigJF+MDm3/f49kYoKfq3TmPgRuuM0pBhpQ/WHY6SzdHq7W3IrrntWbdahBfXTasMC7+S06ULPMLZKYF6d26JTGY4ETiLCNWZIqYHnxtrPkNQUMzItDBNFYoQn6I4MDOQoIsrPZvdOYdkwIxgKaR7XcMb+nMhQpFQaBUYZIT1Wv3uW/Ks3SHTY8DPK40QTjr8+ChMGtYDWPBxRSbBmqQEIS2puhXiMJMLaRLSwye5moZ+1KTc5daRYsJQF0bRQhj8ZOxCjh1+6Nr8yPgSzCX/HCP8HvWrFq1Wal7VS62iedR4cgENwDDxQBy1wATqgCzCYgEfwBJ6dF+fNeXc+vqQ5Zz6zDxYqt/IJZy+0cg==</latexit>

predicts by
<latexit sha1_base64="SCfd+fP4GYFmUbkZOAEK7U96AEw=">AAACW3icdVBNTwIxFCzrFyIqaDh5aSQkHgzZRRG8kXjxQoJR0ITdkG7pakO33bRdE9zwY7zqL/Lgf7FFTIToJE0m8968vjdhwqjSrvuRc9bWNza38tuFneLu3n6pfDBQIpWY9LFgQj6ESBFGOelrqhl5SCRBccjIfTi5svX7ZyIVFfxOTxMSxOiR04hipI00KlWm0Kcc+pl3Cv2x0OoUTvzZqFR166570bhsQUtazUbbEu+seelCzygWVbBAb1TO1Y0bpzHhGjOk1NBzEx1kSGqKGZkV/FSRBOEJeiRDQzmKiQqy+f4zWDPKGEZCmsc1nKu/HRmKlZrGoemMkX5SqzUr/lUbpjpqBxnlSaoJx98fRSmDWkAbBhxTSbBmU0MQltTsCvETkghrE9nSJDubRUHWpdzk1pNi6aQsjGeFGvytWEOCXlb6uvzW3CGYTfgnRvg/GTTqXrPu3pxXO3CRdR4cgWNwAjzQAh1wDXqgDzDIwCt4A++5T2fNKTjF71Ynt/AcgiU4lS8FRLYC</latexit>

y ∈ {�, . . . , k}

Figure 2.2: Classi�cation. �e model f ob-
serves the features of one object and predicts
the object’s response value y ∈ {1, . . . , k} by
ŷ ∈ {1, . . . , k}. In the �gure, the model pre-
dicts class “2”.

�e so-constructed response variable has k = 3 categories. �e corresponding
question would be

“What is the rent category of this apartment? High, middle, or low?”

A classi�cation problem with k = 2 classes is o�en called binary classi�cation.
We use Y = {−1, 1} for binary classi�cation.

▸ Paired comparison. �e paired comparison problem asks which of two al-
ternatives has the higher value in a continuous response variable. Figure 2.3

28

sketches inputs and output of a paired comparison model. Using the Rent data
set, a classical paired comparison question would be

“Which of these two apartments has a higher rent?”

xB

<latexit sha1_base64="4uTMzIVYvQILKQ7yW3iZSu3Nxsc=">AAACTHicdVDLSgMxFM3Ud33r0k2wFlwNM7VauxPduBEq2ge0Q8mkGQ3NY0gyYh3mJ9zqN7n3P9yJYEYr2KIXAodzz72554Qxo9p43qtTmJmdm19YXCour6yurW9sbrW0TBQmTSyZVJ0QacKoIE1DDSOdWBHEQ0ba4fAs77fviNJUimsziknA0Y2gEcXIWKrTC3l6n/VP+xslz/W8o0q9BnNQO6wc58A/OKx70LdMXiUwrkZ/03F7A4kTToTBDGnd9b3YBClShmJGsmIv0SRGeIhuSNdCgTjRQfp1cAbLlhnASCr7hIFf7O+JFHGtRzy0So7MrZ7u5eRfvW5iouMgpSJODBH4+6MoYdBImLuHA6oINmxkAcKK2lshvkUKYWMzmtiU72ZRkF5QYYNqKDlhKQ15VizD30w+EKOHKd2FuLI+JMtswj8xwv9Bq+L6Vbd+WS2d7I2zXgQ7YBfsAx/UwAk4Bw3QBBgw8AiewLPz4rw5787Ht7TgjGe2wUQV5j8B7Y20rg==</latexit>

f

<latexit sha1_base64="aViadXtn0LxdzGenPfMme4RlItc=">AAACRXicdVDLTgIxFO34RHyBLt00IokrMoMgsCNx44YEoiAJTEindLSh007ajglO+AK3+k1+gx/hzrjVDmACRG/S5OTcc2/vOV7IqNK2/W6trW9sbm2ndtK7e/sHh5nsUUeJSGLSxoIJ2fWQIoxy0tZUM9INJUGBx8idN7pK+nePRCoq+K0eh8QN0D2nPsVIG6rlDzI5u2Dbl8VaBSagUi5WE+BclGs2dAyTVA7MqznIWoX+UOAoIFxjhpTqOXao3RhJTTEjk3Q/UiREeITuSc9AjgKi3Hh66QTmDTOEvpDmcQ2n7OJEjAKlxoFnlAHSD2q1l5B/9XqR9qtuTHkYacLx7CM/YlALmNiGQyoJ1mxsAMKSmlshfkASYW3CWdqU7Ga+GzcoNwk1pViyFHvBJJ2Hi0wyEKKnFV2D3xgfgk1Mwr8xwv9Bp1hwSoVaq5Srn82zToETcArOgQMqoA6uQRO0AQYEPIMX8Gq9WR/Wp/U1k65Z85ljsFTW9w+JjLKR</latexit>

are input of

<latexit sha1_base64="siqYKEjSxtNSOTnn8QfjTNkN6hQ=">AAACRXicdVDLTgIxFO34RHyBLt00ookrMoMisCNx44YEoiAJTkindLCh007ajglO5gvc6jf5DX6EO+NWO4AJEL1Jk5Nzz72953gho0rb9ru1srq2vrGZ2cpu7+zu7efyBx0lIolJGwsmZNdDijDKSVtTzUg3lAQFHiN33ugq7d89Eqmo4Ld6HBI3QENOfYqRNlTL6ecKdtG2L0u1CkxBpVyqpsA5L9ds6BgmrQKYVbOft4r3A4GjgHCNGVKq59ihdmMkNcWMJNn7SJEQ4REakp6BHAVEufHk0gSeGmYAfSHN4xpO2PmJGAVKjQPPKAOkH9RyLyX/6vUi7VfdmPIw0oTj6Ud+xKAWMLUNB1QSrNnYAIQlNbdC/IAkwtqEs7Ap3c18N25QbhJqSrFgKfaCJHsK55l0IERPS7oGvzE+BEtMwr8xwv9Bp1R0ykW7dVGon8yyzoAjcAzOgAMqoA6uQRO0AQYEPIMX8Gq9WR/Wp/U1la5Ys5lDsFDW9w8jabJU</latexit>�

xA

<latexit sha1_base64="fRzRlUzk+IsciK/h3gPo+WVqr5E=">AAACTHicdVDLSgMxFM3Ud33r0k2wFlwNM7Vau1PcuBEq2ge0Q8mkGQ3NY0gyYh3mJ9zqN7n3P9yJYEYr2KIXAodzz72554Qxo9p43qtTmJmdm19YXCour6yurW9sbrW0TBQmTSyZVJ0QacKoIE1DDSOdWBHEQ0ba4fAs77fviNJUimsziknA0Y2gEcXIWKrTC3l6n/VP+xslz/W8o0q9BnNQO6wc58A/OKx70LdMXiUwrkZ/03F7A4kTToTBDGnd9b3YBClShmJGsmIv0SRGeIhuSNdCgTjRQfp1cAbLlhnASCr7hIFf7O+JFHGtRzy0So7MrZ7u5eRfvW5iouMgpSJODBH4+6MoYdBImLuHA6oINmxkAcKK2lshvkUKYWMzmtiU72ZRkF5QYYNqKDlhKQ15VizD30w+EKOHKd2FuLI+JMtswj8xwv9Bq+L6Vbd+WS2d7I2zXgQ7YBfsAx/UwAk4Bw3QBBgw8AiewLPz4rw5787Ht7TgjGe2wUQV5j8B66y0rQ==</latexit>

ŷ

<latexit sha1_base64="17LTVXKLai1cZxVjjcD9K/iG4n0=">AAACS3icdVDLTgIxFO3gC/GJLt00IokrMoMosCNx44YEo4AJTEyndKSh007ajsk44SPc6jf5AX6HO+PCFjERozdpcnLuubf3nCBmVGnXfXVyS8srq2v59cLG5tb2zm5xr6dEIjHpYsGEvAmQIoxy0tVUM3ITS4KigJF+MDm3/f49kYoKfq3TmPgRuuM0pBhpQ/WHY6SzdHq7W3IrrntWbdahBfXTasMC7+S06ULPMLZKYF6d26JTGY4ETiLCNWZIqYHnxtrPkNQUMzItDBNFYoQn6I4MDOQoIsrPZvdOYdkwIxgKaR7XcMb+nMhQpFQaBUYZIT1Wv3uW/Ks3SHTY8DPK40QTjr8+ChMGtYDWPBxRSbBmqQEIS2puhXiMJMLaRLSwye5moZ+1KTc5daRYsJQF0bRQhj8ZOxCjh1+6Nr8yPgSzCX/HCP8HvWrFq1Wal7VS62iedR4cgENwDDxQBy1wATqgCzCYgEfwBJ6dF+fNeXc+vqQ5Zz6zDxYqt/IJZy+0cg==</latexit>

<latexit sha1_base64="4TH9bUh5TZYdgONZOLH72xOkY3Y=">AAACRnicdVDLSgMxFL1TX7W+dekmWAU3DjPVWrsT3LgR6qNVqEPJpBkbzCRDkhHq0D9wq9/kL/gT7sStmbaCFb0QOJx77s09J0w408bz3pzC1PTM7FxxvrSwuLS8srq23tIyVYQ2ieRS3YRYU84EbRpmOL1JFMVxyOl1eH+S968fqNJMiivTT2gQ4zvBIkawsdTFnt9ZLXuu5x1W6jWUg1q1cpQDf79a95BvmbzKMK5GZ81xb7uSpDEVhnCsddv3EhNkWBlGOB2UblNNE0zu8R1tWyhwTHWQDU8doB3LdFEklX3CoCH7cyLDsdb9OLTKGJue/t3Lyb967dRER0HGRJIaKsjooyjlyEiU+0ZdpigxvG8BJorZWxHpYYWJselMbMp38yjIzpiwETWUnLCUhfGgtIN+MvlAgh9/6c7EpfUh+cAm/B0j+h+0Kq5fdb3zg/Lx9jjrImzCFuyCDzU4hlNoQBMIRPAEz/DivDrvzofzOZIWnPHMBkxUAb4AnGaxjA==</latexit>−�

predicts by
<latexit sha1_base64="Nbxbbnkp3mFGW3tb6u09ekS9YWw=">AAACa3icdVDbbtNAEN2YWwm3tH0DHkZEkYpEIzuQpn1AKvDCS6UgSFsptqz1Zp2uut61dscIY/kL+Bpe4Uv4CP6B3TZITQVHWunozJmZnZOVUlgMw1+d4MbNW7fvbNzt3rv/4OGj3ubWsdWVYXzGtNTmNKOWS6H4DAVKfloaTotM8pPs/J2vn3zmxgqtPmFd8qSgSyVywSg6Ke0NangNMfIv2Nilanfq9M1unb59DrFQEDe70QuI4jbt9cNhGO6NDibgyWQ82vckejk+CCFyikefrDBNNzvDeKFZVXCFTFJr51FYYtJQg4JJ3nbjyvKSsnO65HNHFS24TZqLe1oYOGUBuTbuKYQL9WpHQwtr6yJzzoLimb1e8+K/avMK8/2kEaqskCt2uSivJKAGHw4shOEMZe0IZUa4vwI7o4YydBGuTfKzZZ40R0K5HKdGr53UZEXbHcBVxTeU9Os135H66O7Q0if8N0b4PzkeDaPxMPzwqn8Iq6w3yBPyjOyQiEzIIXlPpmRGGPlGvpMf5Gfnd7AdPA6eXlqDzqpnm6whGPwBoX+7wg==</latexit>

y = sgn(yA − yB) ∈ {−�, �}

Figure 2.3: Paired comparison. �e model f
observes the features of two alternativesA and
B and predicts which alternative has a higher
response value. In the �gure, the model pre-
dicts that alternative B has a higher response
value, that is, sgn(yA − yB) = −1.

�e paired comparison problem can be formulated as a classi�cation problem
as follows. Let A and B denote the two observations that are to be compared,
let yA and yB denote their response values, let xA and xB denote their feature
values, and let sgn denote the mathematical sign function: sgn(z) is 1 if z > 0,
0 if z = 0, and −1 if z < 0. �e classi�cation observation corresponding to the
comparison of A and B is then de�ned as

(y, x) ∶= (sgn(yA − yB), sgn(xA − xB)),
that is, the signs of the di�erences in response and feature values of A and B.
�is leads to Y = {−1, 0, 1} with the obvious interpretation that if y = 1, A has
a higher response value than B; if y = −1, A has a lower response value than B;
and if y = 0, there is a tie between both observations.
Formulated this way, the set of possible response variables Y is a �nite set

of integers—just as it is in classi�cation.4 We can therefore use existing classi- 4 �e integers are just arbitrary labels for dif-
ferent classes. It does not matter whether the
integers are negative, positive, ordered, or un-
ordered.

�cation algorithms to model paired comparison tasks. In particular, if ties are
ignored, then the response set of paired comparison is Y = {−1, 1}, and paired
comparison can be modeled as a binary classi�cation problem.

▸ Discrete choice. A discrete choice model predicts a choice among k alter-
natives, made (or to be made) by a decision maker. Using the Rent data set, a
classical discrete choice question (with k = 4 alternatives) would be

“Presented with the choice between apartments A, B, C, and D, which one
did (or would) the decision maker choose?”

�e training set for a discrete choice model is a set of observed choices. One
observation in discrete choice is called a choice set. It consists of a collection of
choice alternatives, along with their feature descriptions, and the response vari-
able, which indicates the alternative that was chosen. Formally, let k i denote the
size of a given choice set i, then the response variable is given by y i ∈ {1, . . . , k i}
and the features are given by x i = {x i1 , . . . , x i k}, where x i j is the feature vector
belonging to alternative j in choice set i.

A

<latexit sha1_base64="GosvgFXeTCoP89JigFRLpOnPBfQ=">AAACRXicdVDLSgMxFE18W5/VpZtgFVwNM/XRdqe4cSNUtFqoQ8mkmRrMY0gyQh3mC9zqN/kNfoQ7casZrWCLXggczj335p4TJZwZ6/svcGJyanpmdm6+tLC4tLyyWl67NCrVhLaI4kq3I2woZ5K2LLOcthNNsYg4vYpuj4v+1R3Vhil5YQcJDQXuSxYzgq2jzo66qxXf8/2DaqOGClDbr9YLEOzuN3wUOKaoChhWs1uG3nVPkVRQaQnHxnQCP7FhhrVlhNO8dJ0ammByi/u046DEgpow+7o0R9uO6aFYafekRV/s74kMC2MGInJKge2NGe8V5F+9TmrjepgxmaSWSvL9UZxyZBUqbKMe05RYPnAAE83crYjcYI2JdeGMbCp28zjMTpl0CTW1GrGURSIvbaPfTDGQ4Psx3ak8dz4Uz13CPzGi/8Fl1Qv2vMbZXuVwa5j1HNgAm2AHBKAGDsEJaIIWIICCB/AInuAzfIVv8P1bOgGHM+tgpODHJ0QHsmw=</latexit>

B

<latexit sha1_base64="NTe2sISt/gbKsjp2wItqTwA4evw=">AAACRXicdVDLSgMxFE18W5/VpZtgFVwNM/XRdie6cSNUtFqoQ8mkmRrMY0gyQh3mC9zqN/kNfoQ7casZrWCLXggczj335p4TJZwZ6/svcGJyanpmdm6+tLC4tLyyWl67NCrVhLaI4kq3I2woZ5K2LLOcthNNsYg4vYpuj4v+1R3Vhil5YQcJDQXuSxYzgq2jzo66qxXf8/2DaqOGClDbr9YLEOzuN3wUOKaoChhWs1uG3nVPkVRQaQnHxnQCP7FhhrVlhNO8dJ0ammByi/u046DEgpow+7o0R9uO6aFYafekRV/s74kMC2MGInJKge2NGe8V5F+9TmrjepgxmaSWSvL9UZxyZBUqbKMe05RYPnAAE83crYjcYI2JdeGMbCp28zjMTpl0CTW1GrGURSIvbaPfTDGQ4Psx3ak8dz4Uz13CPzGi/8Fl1Qv2vMbZXuVwa5j1HNgAm2AHBKAGDsEJaIIWIICCB/AInuAzfIVv8P1bOgGHM+tgpODHJ0Xosm0=</latexit>

xC

<latexit sha1_base64="944AhyizzJyFdKhFVUVtYRIf1nA=">AAACTHicdVDLSgMxFM3UV62vVpdugrXgapipj7Y7wY0boaK1hXYomTSjoXkMSUasw/yEW/0m9/6HOxHMaAUreiFwOPfcm3tOGDOqjee9OIW5+YXFpeJyaWV1bX2jXNm80jJRmHSwZFL1QqQJo4J0DDWM9GJFEA8Z6Ybjk7zfvSVKUykuzSQmAUfXgkYUI2Op3iDk6V02PBmWq57reUf1VgPmoHFYb+bA3z9sedC3TF5VMK32sOK4g5HECSfCYIa07vtebIIUKUMxI1lpkGgSIzxG16RvoUCc6CD9PDiDNcuMYCSVfcLAT/bnRIq41hMeWiVH5kb/7uXkX71+YqJmkFIRJ4YI/PVRlDBoJMzdwxFVBBs2sQBhRe2tEN8ghbCxGc1synezKEjPqLBBtZWcsZSGPCvV4E8mH4jR/S/dmbiwPiTLbMLfMcL/wVXd9Q/c1vlB9Xh3mnURbIMdsAd80ADH4BS0QQdgwMADeARPzrPz6rw571/SgjOd2QIzVVj8AO9utK8=</latexit>

f

<latexit sha1_base64="aViadXtn0LxdzGenPfMme4RlItc=">AAACRXicdVDLTgIxFO34RHyBLt00IokrMoMgsCNx44YEoiAJTEindLSh007ajglO+AK3+k1+gx/hzrjVDmACRG/S5OTcc2/vOV7IqNK2/W6trW9sbm2ndtK7e/sHh5nsUUeJSGLSxoIJ2fWQIoxy0tZUM9INJUGBx8idN7pK+nePRCoq+K0eh8QN0D2nPsVIG6rlDzI5u2Dbl8VaBSagUi5WE+BclGs2dAyTVA7MqznIWoX+UOAoIFxjhpTqOXao3RhJTTEjk3Q/UiREeITuSc9AjgKi3Hh66QTmDTOEvpDmcQ2n7OJEjAKlxoFnlAHSD2q1l5B/9XqR9qtuTHkYacLx7CM/YlALmNiGQyoJ1mxsAMKSmlshfkASYW3CWdqU7Ga+GzcoNwk1pViyFHvBJJ2Hi0wyEKKnFV2D3xgfgk1Mwr8xwv9Bp1hwSoVaq5Srn82zToETcArOgQMqoA6uQRO0AQYEPIMX8Gq9WR/Wp/U1k65Z85ljsFTW9w+JjLKR</latexit>

are input of

predicts the decision maker’s
 choice by

ŷ

<latexit sha1_base64="17LTVXKLai1cZxVjjcD9K/iG4n0=">AAACS3icdVDLTgIxFO3gC/GJLt00IokrMoMosCNx44YEo4AJTEyndKSh007ajsk44SPc6jf5AX6HO+PCFjERozdpcnLuubf3nCBmVGnXfXVyS8srq2v59cLG5tb2zm5xr6dEIjHpYsGEvAmQIoxy0tVUM3ITS4KigJF+MDm3/f49kYoKfq3TmPgRuuM0pBhpQ/WHY6SzdHq7W3IrrntWbdahBfXTasMC7+S06ULPMLZKYF6d26JTGY4ETiLCNWZIqYHnxtrPkNQUMzItDBNFYoQn6I4MDOQoIsrPZvdOYdkwIxgKaR7XcMb+nMhQpFQaBUYZIT1Wv3uW/Ks3SHTY8DPK40QTjr8+ChMGtYDWPBxRSbBmqQEIS2puhXiMJMLaRLSwye5moZ+1KTc5daRYsJQF0bRQhj8ZOxCjh1+6Nr8yPgSzCX/HCP8HvWrFq1Wal7VS62iedR4cgENwDDxQBy1wATqgCzCYgEfwBJ6dF+fNeXc+vqQ5Zz6zDxYqt/IJZy+0cg==</latexit>

xA

<latexit sha1_base64="fRzRlUzk+IsciK/h3gPo+WVqr5E=">AAACTHicdVDLSgMxFM3Ud33r0k2wFlwNM7Vau1PcuBEq2ge0Q8mkGQ3NY0gyYh3mJ9zqN7n3P9yJYEYr2KIXAodzz72554Qxo9p43qtTmJmdm19YXCour6yurW9sbrW0TBQmTSyZVJ0QacKoIE1DDSOdWBHEQ0ba4fAs77fviNJUimsziknA0Y2gEcXIWKrTC3l6n/VP+xslz/W8o0q9BnNQO6wc58A/OKx70LdMXiUwrkZ/03F7A4kTToTBDGnd9b3YBClShmJGsmIv0SRGeIhuSNdCgTjRQfp1cAbLlhnASCr7hIFf7O+JFHGtRzy0So7MrZ7u5eRfvW5iouMgpSJODBH4+6MoYdBImLuHA6oINmxkAcKK2lshvkUKYWMzmtiU72ZRkF5QYYNqKDlhKQ15VizD30w+EKOHKd2FuLI+JMtswj8xwv9Bq+L6Vbd+WS2d7I2zXgQ7YBfsAx/UwAk4Bw3QBBgw8AiewLPz4rw5787Ht7TgjGe2wUQV5j8B66y0rQ==</latexit>

xB

<latexit sha1_base64="4uTMzIVYvQILKQ7yW3iZSu3Nxsc=">AAACTHicdVDLSgMxFM3Ud33r0k2wFlwNM7VauxPduBEq2ge0Q8mkGQ3NY0gyYh3mJ9zqN7n3P9yJYEYr2KIXAodzz72554Qxo9p43qtTmJmdm19YXCour6yurW9sbrW0TBQmTSyZVJ0QacKoIE1DDSOdWBHEQ0ba4fAs77fviNJUimsziknA0Y2gEcXIWKrTC3l6n/VP+xslz/W8o0q9BnNQO6wc58A/OKx70LdMXiUwrkZ/03F7A4kTToTBDGnd9b3YBClShmJGsmIv0SRGeIhuSNdCgTjRQfp1cAbLlhnASCr7hIFf7O+JFHGtRzy0So7MrZ7u5eRfvW5iouMgpSJODBH4+6MoYdBImLuHA6oINmxkAcKK2lshvkUKYWMzmtiU72ZRkF5QYYNqKDlhKQ15VizD30w+EKOHKd2FuLI+JMtswj8xwv9Bq+L6Vbd+WS2d7I2zXgQ7YBfsAx/UwAk4Bw3QBBgw8AiewLPz4rw5787Ht7TgjGe2wUQV5j8B7Y20rg==</latexit>

<latexit sha1_base64="hi1CGwX8WMV6yPFK6CLQx32rz5Y=">AAACTHicdVDLSgMxFM3UV62vqks3wSq4GmaqtXZX0IWbQkWrhXYomTSjoXkMSUasw/yEW/0m9/6HOxHMaAUreiFwOPfcm3tOGDOqjee9OIWZ2bn5heJiaWl5ZXWtvL5xqWWiMOlgyaTqhkgTRgXpGGoY6caKIB4ychWOjvP+1S1RmkpxYcYxCTi6FjSiGBlLdfshT++ywcmgXPFczzusNuowB/Va9SgH/n6t4UHfMnlVwKTag3XH7Q8lTjgRBjOkdc/3YhOkSBmKGclK/USTGOERuiY9CwXiRAfp58EZ3LXMEEZS2ScM/GR/TqSIaz3moVVyZG70715O/tXrJSY6ClIq4sQQgb8+ihIGjYS5ezikimDDxhYgrKi9FeIbpBA2NqOpTfluFgVpiwobVFvJKUtpyLPSLvzJ5AMxuv+la4lz60OyzCb8HSP8H1xWXb/memcHlebOJOsi2ALbYA/4oA6a4BS0QQdgwMADeARPzrPz6rw571/SgjOZ2QRTVZj/AO7BtKg=</latexit>xD

C

<latexit sha1_base64="NG6OSryhPA0u+g/n2+3X1Ts4+F8=">AAACRXicdVDLSgMxFE181vqsLt0Eq+CqzNTW2l2hGzeFFq0KdZBMmtHQTDIkGaEO/QK3+k1+gx/hTtxq0lawohcCh3PPvbnnhAln2njeK5ybX1hcWs6t5FfX1jc2twrbF1qmitAukVyqqxBrypmgXcMMp1eJojgOOb0MB03Xv7ynSjMpzs0woUGMbwWLGMHGUp3mzVbRK3necbleQw7UquUTB/yjat1DvmVcFcG02jcFWLruS5LGVBjCsdY930tMkGFlGOF0lL9ONU0wGeBb2rNQ4JjqIBtfOkIHlumjSCr7hEFj9udEhmOth3FolTE2d/p3z5F/9XqpiU6CjIkkNVSQyUdRypGRyNlGfaYoMXxoASaK2VsRucMKE2PDmdnkdvMoyFpM2ITaSs5YysJ4lD9APxk3kOCHX7qWOLM+JB/ZhL9jRP+Di3LJr5TqnUqxsT/NOgd2wR44BD6ogQY4BW3QBQRQ8AiewDN8gW/wHX5MpHNwOrMDZgp+fgFHybJu</latexit>

<latexit sha1_base64="GY0PvR9wrHadI3US8lToUuemS3s=">AAACRXicdVDLTgIxFO3gC/GJLt00IokrMoMisCPRhRsSiPJIYEI6paONnXbSdkxwwhe41W/yG/wId8atdgATIHqTJifnnnt7z/FCRpW27XcrtbK6tr6R3sxsbe/s7u1nD9pKRBKTFhZMyK6HFGGUk5ammpFuKAkKPEY63sNl0u88Eqmo4Ld6FBI3QHec+hQjbajm1WA/Zxds+6JYLcMElEvFSgKcs1LVho5hksqBWTUGWavQHwocBYRrzJBSPccOtRsjqSlmZJzpR4qECD+gO9IzkKOAKDeeXDqGecMMoS+keVzDCTs/EaNAqVHgGWWA9L1a7iXkX71epP2KG1MeRppwPP3IjxjUAia24ZBKgjUbGYCwpOZWiO+RRFibcBY2JbuZ78Z1yk1CDSkWLMVeMM7k4TyTDIToaUlX5zfGh2Bjk/BvjPB/0C4WnFLBbp7naiezrNPgCByDU+CAMqiBa9AALYABAc/gBbxab9aH9Wl9TaUpazZzCBbK+v4BRxyyZw==</latexit>D

<latexit sha1_base64="y1pajvTcIQBOgJpzcsgZ0UfpB6Q=">AAACW3icdVDLSgMxFE3Hd31VxZWbi0VwUcpMtVZ3vhZuhIpWhc5QMmlGg5lkSDJCHfoxbvWLXPgvJlrBih4IHM659+beE2ecaeP7byVvYnJqemZ2rjy/sLi0XFlZvdYyV4R2iORS3cZYU84E7RhmOL3NFMVpzOlN/HDi/JtHqjST4soMMhql+E6whBFsrNSrrA8gZALC4qgGxzU4qcEphMNeperXfX+vcdACR1rNxr4jwU7zwIfAKg5VNEK7t1Kqh31J8pQKQzjWuhv4mYkKrAwjnA7LYa5phskDvqNdSwVOqY6Kz/2HsGWVPiRS2ScMfKo/Owqcaj1IY1uZYnOvf3tO/Mvr5ibZjwomstxQQb4+SnIORoILA/pMUWL4wBJMFLO7ArnHChNjIxub5GbzJCrOmbC5tZUcO6mI02F5C34qriHDT7/qzsWlvUNyl/B3jPA/uW7Ug2bdv9itHsIo61m0gTbRNgpQCx2iM9RGHURQgZ7RC3otvXsTXtlb+Cr1SqOeNTQGb/0DrGW0xg==</latexit>

y ∈ {A, B, C , D}

Figure 2.4: Discrete choice. �e model f ob-
serves the features of all alternatives A, B, C
and D and predicts a decision maker’s choice
y ∈ {A, B,C ,D} by ŷ ∈ {A, B,C ,D}. In
the �gure, the model predicts that the deci-
sion maker would choose alternative B.

�e response in discrete choice is a single integer chosen from a �nite set
of integers and thus looks just like the response in classi�cation. However, the
input in discrete choice is a set of feature vectors rather than a single feature
vector as in classi�cation—the two decision problems therefore are di�erent.
Table 2.2 shows an example choice data set consisting of four choice sets (as

indicated by varying background colors and the column “choice set id”). Each
row corresponds to one choice alternative (for example, an apartment). �e
observed choice is indicated by a one-hot-variable called “choice”, showing the
chosen alternative (“1”) and the not-chosen alternatives (“0”), for each choice

background & related literature 29

set. In terms of Equation 2.1, these choices translate to y1 = 3, y2 = 2, y3 = 1,
and y4 = 5. Choice sets can be of varying size.

choice set id choice rentm size rooms year good . . . kitchen
1 0 10.90 68 2 1918 yes . . . no
1 0 11.01 65 2 1995 yes . . . no
1 1 8.38 63 3 1918 yes . . . no
2 0 8.52 65 3 1983 no . . . no
2 1 6.98 100 4 1995 yes . . . yes
2 0 11.55 81 4 1980 no . . . no
2 0 3.72 55 2 1924 no . . . no
3 1 5.40 79 3 1924 no . . . no
3 0 8.58 52 1 1957 no . . . no
4 0 4.95 77 3 1996 no . . . yes
4 0 7.95 90 3 1973 no . . . no
4 0 13.02 110 5 1910 yes . . . yes
4 0 9.75 62 3 1902 yes . . . no
4 1 6.84 42 2 1989 no . . . yes

Table 2.2: Example choice set data set using
data from the Rent data set (§2.1.1). �e data
set contains 4 observations (that is, choice
sets), as indicated by the choice set id and the
alternating background colors. Each choice
set consists of a variable number of alterna-
tives (rows), which correspond to apartments
in the Rent example. �e choice variable de-
notes the observed choice for each choice set.
Compared to the data set used for regression
or classi�cation (see, for example, Table 2.1),
choice set data has two additional variables
(choice set id and choice). Furthermore, one
observation consists of multiple choice alter-
natives.

2.1.3 Prediction models

�e last subsection was about supervised learning problems. �is section is
about the solutions to these problems and di�erent approaches to tackle the
central question: How to construct a good model f ?

�e literature has proposed many di�erent model classes and algorithms to
estimate their parameters. All models suitable for a particular prediction task
take the same types of feature values as inputs and produce the same types of
outputs, as described in the previous subsection. Model classes di�er in the type
and number of operations that can be applied to tweak and combine the input
features in order to produce the desired output value.
Next I describe the linearmodel, which is one of themost-usedmodel classes

not only in machine learning but also in the social and natural sciences. Fur-
thermore, many existing models of bounded rationality are special cases of the
linear model (see Section 2.2). Further below, I then brie�y describe (deep) ar-
ti�cial neural networks, which generalize linear models by combining multiple
individual linear models into one single model.

▸ The linear model. �e linear model allows all features to be weighted in-
dependently (that is, multiplied by a real-valued weight parameter) before the
weighted feature values are summed up to produce the output. Formally, a lin-
ear model is given by

ŷ = g(p∑
j=1 x jβ j), (2.2)

where β1 , . . . , βp are the linear weights5 and g ∶ R → Y is a link function that 5 Sometimes, the linear model is de�ned as
ŷ = g(β0+∑p

j=1 x j β j), that is, with an “inter-
cept” β0 . Note that the intercept-free version
(Equation 2.2) is equivalent to the version that
uses an intercept if the feature set of the for-
mer is expanded by a constant feature variable
xc = 1. For notational simplicity, we stick with
the intercept-free formulation in the remain-
der of this dissertation.

relates the linear combination of features to the response variable, y. �e link
function is usually chosen in accordance with the prediction task:

In regression, Y = R and we simply use the identity function g(x) = x as link
function (that is, in regression the linear model simpli�es to ŷ = ∑p

j=1 x jβ j).

30

In binary classi�cation, popular choices for the link function are the logistic
function g(x) = 1

1+e−x and the logistic function with subsequent threshold-
ing,6 given by g(x) = sgn(1

1+e−x − t), where t ∈ [0, 1] is the decision thresh- 6 �e logistic function alone maps from
(−∞,∞) to (0, 1). �e output of the logis-
tic function thus can be used as a probabil-
ity for a stochastic prediction. Alternatively,
a deterministic prediction is usually achieved
by setting a decision threshold (for example,
0.5) and predicting “1” whenever the output
from the logistic function is higher than the
threshold, and “−1” otherwise.

old.

Using vector notation and denoting β = (β1 , . . . , βp), we can rewrite the lin-
ear model as ŷ = g(x⊺β). Similarly, we can express the predicted values for
an entire training set as ŷ = g(Xβ), where the link function g here is applied
element-wise to the elements of the vector Xβ.

In discrete choice, the linear model is called multinomial logistic regression.7 7 Unfortunately, the term multinomial logis-
tic regression has been used for linear models
in both multi-class classi�cation and discrete
choice. Here we describe the discrete choice
version because it will be used in §5.2.

It is slightly more complicated than linear models in regression or binary
classi�cation because the input of the model in discrete choice consists of
multiple feature vectors describing each of the k choice alternatives, denoted
by x i for i = 1, . . . , k. �e model computes a latent utility (or score) for each
alternative, given by

U(i) = β⊺x i for i = 1, . . . , k.
A deterministic version ofmultinomial logistic regression outputs the utility-
maximizing choice alternative, that is,

ŷ = argmax
i∈{1, . . . ,k}U(i).

Alternatively, a stochastic version of multinomial logistic regression outputs
choice alternative i with probability

P(ŷ = i) = eU(i)
∑k

j=1 eU(j) .

▸ Learning a linear model. �e linear model by itself only speci�es the way
in which the features x can be possibly tweaked and combined to produce an
estimate of the response y. Here we are interested in how the model parameters
are learned from a training data set.

�e overall objective is to choose the model parameters such that the model
predictions on unseen observations are as close as possible to the true response
values.�e obvious problem is that we generally do not know the true response
values of any future observations. We do, however, have access to the true re-
sponse values in the “supervised” training data.
For this reason we make an assumption that is central to most of supervised

learning: future data is assumed to be generated from the same data generating
process as the training data. Building on this consistency assumption, we can
use the training data as a proxy for future data. In particular, if we �nd parame-
ters such that the model’s predictions of response values in the training data are
close to their true values, then there is hope that predictions will be accurate on
previously unseen data as well.

background & related literature 31

What it means for a prediction and a true value to be “close” to each other
depends on the prediction task at hand. �e following models maximize some
form of closeness (or equivalently, minimize some form of distance function)
between predictions and true values for linear models in various prediction
tasks.8 8 Yet another term that is o�en used is the

“minimization of a loss function”.

Ordinary least squares, or OLS, is a linear regression model.�e OLS estimate
is de�ned as the minimizer of the residual some of squares, or RSS.�e RSS
sums up the squared distances between predictions and true values on the
training data and is given by

RSS(β) = n∑
i=1(y i − ŷ i)2 = ∥y − ŷ∥22 = ∥y − Xβ∥22 .

�e corresponding minimization problem allows the closed-form solution

βOLS = argmin
β

RSS(β) = (XT X)−1XT y.

Logistic regression is a linear binary classi�cationmodel. It searches theweights
that maximize the likelihood of the training data under the assumption that
the response variable y is sampled from a random variable Y that follows a
Bernoulli distribution with probability of success given by the linear model
with logistic link function. Formally, the probability that the response is “1”
is given by

P(Y = 1∣x , β) = g(xT β) = 1
1 + e−x T β .

�e corresponding likelihood function is given by

L(β∣y; X) = n∏
i=1 [P(Y = 1∣x , β)y i (1 − P(Y = 1∣x , β))(1−y i)] .

�e maximization of this likelihood function does not allow a closed-form
solution. However, the likelihood function for logistic regression is globally
concave and easily di�erentiable. It thus has a unique maximum which can
be easily approximated using standard numerical optimization algorithms
such as gradient ascent.

Multinomial logistic regression (discrete choice). Multinomial logistic regres-
sionmaximizes the likelihood of observed choices in the training data under
the following assumption about the decision maker’s choice behavior: �e
decision maker’s choice is stochastic and can be described by a random vari-
able Y with support {1, . . . , k} and the probability that the decision maker
chooses alternative y is given by

P(Y = i ∣ β; x1 , . . . , xk) = ex T
i β

∑k
j=1 ex T

j β ,

32

where x j is the feature vector describing alternative j. Further assuming that
the observed choices in the choice data setD are independent of each other,
the corresponding log-likelihood is given by

logL(β∣D) = n∑
i
logP(Y = y i ∣ β; x i1 , . . . , x i k), (2.3)

where x i j is the feature vector of size p, corresponding to alternative j in
choice set i. Similar as in logistic regression, this likelihood function can be
maximized numerically using gradient ascent techniques.9 9 See Train (2009) for a comprehensive tu-

torial about estimating the parameters of a
multinomial logistic regression model.▸ Deep neural networks. Deep neural networks are a large class of machine

learning models that are composed of multiple connected processing layers
that learn progressively more complex representations of raw data.10 In recent 10 LeCun et al. (2015)

years, deep neural networks improved the state-of-the-art acrossmanymachine
learning areas such as natural language processing and computer vision. Here I
only discuss the deep learning architecture that is relevant and used in this dis-
sertation: feed-forward deep neural networks. For an introduction to various
other neural networks architectures as well as the algorithms to train them, the
reader is referred to Goodfellow et al. (2016).

<latexit sha1_base64="1Pnfz6kGJH9hNH+darC0oHRg7Ek=">AAACN3icdVDLSgMxFE181vpqdSlIsAquyky1tt0V3LgpVGpVqEPJpJkamkmGJCPWoZ/gVr/FT3HlTtz6B2baClb0QOBw7iPnHj/iTBvHeYVz8wuLS8uZlezq2vrGZi6/dallrAhtE8mluvaxppwJ2jbMcHodKYpDn9Mrf3Ca1q/uqNJMigszjKgX4r5gASPYWKl133W7uYJTdJyTUq2CUlIpl6opcY/KNQe5VklRAFM0u3m4e9OTJA6pMIRjrTuuExkvwcowwukoexNrGmEywH3asVTgkGovGXsdoQOr9FAglX3CoLH6cyLBodbD0LedITa3+nctFf+qdWITVL2EiSg2VJDJR0HMkZEoPRz1mKLE8KElmChmvSJyixUmxsYzsyndzQMvaTBhM2oqOcoeoJ820oYIP8iZU5OGaFnfko9sot+xof/JZanolovO+XGhvj/NNgN2wB44BC6ogDo4A03QBgT0wSN4As/wBb7Bd/gxaZ2D05ltMAP4+QXvaqyZ</latexit> x�

<latexit sha1_base64="matsH1BaL9OnSGnNpTTcrfOqG5Q=">AAACOXicdVDLSgMxFE18W19Vl4IEq+CqZKq1uiu4cVOo6KhQB8mkGQ3NJEOSEerQb3Cr3+KXuHQnbv0BE61gRQ8EDuc+cu6JM8GNxfgZjo1PTE5Nz8yW5uYXFpfKyytnRuWaspAqofRFTAwTXLLQcivYRaYZSWPBzuPeoa+f3zJtuJKntp+xKCXXkiecEuuk8LKrrLkqV3AV473aQQN50qjX9j0JduoHGAVO8aiAIdpXy3DdDdI8ZdJSQYzpBDizUUG05VSwQekyNywjtEeuWcdRSVJmouLT7QBtOaWLEqXdkxZ9qj8nCpIa009j15kSe2N+17z4V62T22Q/KrjMcssk/fooyQWyCvnTUZdrRq3oO0Ko5s4rojdEE2pdQCOb/G6RREWLS5dSW6tBaQv9tOEbMnKnRk4tWvLE+VZi4BL9jg39T85q1aBexce7lebmMNsZsAY2wDYIQAM0wRFogxBQwME9eACP8Am+wFf49tU6Boczq2AE8P0DJxCtuw==</latexit>. . .

<latexit sha1_base64="s+16G3XYn7ae+D9vU8dSCApq0XI=">AAACOnicdVDLSgMxFM34rPXV6lKQYBVclZlqbbsruHFTqGgf0A6SSTM1NpMMSaZQh/6DW/0Wf8StO3HrB5hpK7SiBwKHcx8593gho0rb9pu1tLyyurae2khvbm3v7Gaye00lIolJAwsmZNtDijDKSUNTzUg7lAQFHiMtb3CZ1FtDIhUV/FaPQuIGqM+pTzHSRmp2hz2h1V0mZ+dt+6JQKcGElIqFckKcs2LFho5REuTADPW7rHXY7QkcBYRrzJBSHccOtRsjqSlmZJzuRoqECA9Qn3QM5Sggyo0ndsfwxCg96AtpHtdwos5PxChQahR4pjNA+l79riXiX7VOpP2yG1MeRppwPP3IjxjUAia3wx6VBGs2MgRhSY1XiO+RRFibhBY2JbuZ78Y1yk1MdSnG6RM4byNpCNGjWDg1rvEb41uwsUn0Jzb4P2kW8k4xb1+f56rHs2xT4AAcgVPggBKogitQBw2AwQN4As/gxXq13q0P63PaumTNZvbBAqyvbyTirjs=</latexit>⋮

<latexit sha1_base64="s+16G3XYn7ae+D9vU8dSCApq0XI=">AAACOnicdVDLSgMxFM34rPXV6lKQYBVclZlqbbsruHFTqGgf0A6SSTM1NpMMSaZQh/6DW/0Wf8StO3HrB5hpK7SiBwKHcx8593gho0rb9pu1tLyyurae2khvbm3v7Gaye00lIolJAwsmZNtDijDKSUNTzUg7lAQFHiMtb3CZ1FtDIhUV/FaPQuIGqM+pTzHSRmp2hz2h1V0mZ+dt+6JQKcGElIqFckKcs2LFho5REuTADPW7rHXY7QkcBYRrzJBSHccOtRsjqSlmZJzuRoqECA9Qn3QM5Sggyo0ndsfwxCg96AtpHtdwos5PxChQahR4pjNA+l79riXiX7VOpP2yG1MeRppwPP3IjxjUAia3wx6VBGs2MgRhSY1XiO+RRFibhBY2JbuZ78Y1yk1MdSnG6RM4byNpCNGjWDg1rvEb41uwsUn0Jzb4P2kW8k4xb1+f56rHs2xT4AAcgVPggBKogitQBw2AwQN4As/gxXq13q0P63PaumTNZvbBAqyvbyTirjs=</latexit>⋮

<latexit sha1_base64="matsH1BaL9OnSGnNpTTcrfOqG5Q=">AAACOXicdVDLSgMxFE18W19Vl4IEq+CqZKq1uiu4cVOo6KhQB8mkGQ3NJEOSEerQb3Cr3+KXuHQnbv0BE61gRQ8EDuc+cu6JM8GNxfgZjo1PTE5Nz8yW5uYXFpfKyytnRuWaspAqofRFTAwTXLLQcivYRaYZSWPBzuPeoa+f3zJtuJKntp+xKCXXkiecEuuk8LKrrLkqV3AV473aQQN50qjX9j0JduoHGAVO8aiAIdpXy3DdDdI8ZdJSQYzpBDizUUG05VSwQekyNywjtEeuWcdRSVJmouLT7QBtOaWLEqXdkxZ9qj8nCpIa009j15kSe2N+17z4V62T22Q/KrjMcssk/fooyQWyCvnTUZdrRq3oO0Ko5s4rojdEE2pdQCOb/G6RREWLS5dSW6tBaQv9tOEbMnKnRk4tWvLE+VZi4BL9jg39T85q1aBexce7lebmMNsZsAY2wDYIQAM0wRFogxBQwME9eACP8Am+wFf49tU6Boczq2AE8P0DJxCtuw==</latexit>. . .

<latexit sha1_base64="matsH1BaL9OnSGnNpTTcrfOqG5Q=">AAACOXicdVDLSgMxFE18W19Vl4IEq+CqZKq1uiu4cVOo6KhQB8mkGQ3NJEOSEerQb3Cr3+KXuHQnbv0BE61gRQ8EDuc+cu6JM8GNxfgZjo1PTE5Nz8yW5uYXFpfKyytnRuWaspAqofRFTAwTXLLQcivYRaYZSWPBzuPeoa+f3zJtuJKntp+xKCXXkiecEuuk8LKrrLkqV3AV473aQQN50qjX9j0JduoHGAVO8aiAIdpXy3DdDdI8ZdJSQYzpBDizUUG05VSwQekyNywjtEeuWcdRSVJmouLT7QBtOaWLEqXdkxZ9qj8nCpIa009j15kSe2N+17z4V62T22Q/KrjMcssk/fooyQWyCvnTUZdrRq3oO0Ko5s4rojdEE2pdQCOb/G6RREWLS5dSW6tBaQv9tOEbMnKnRk4tWvLE+VZi4BL9jg39T85q1aBexce7lebmMNsZsAY2wDYIQAM0wRFogxBQwME9eACP8Am+wFf49tU6Boczq2AE8P0DJxCtuw==</latexit>. . .

Input
layer

Hidden
layer 1

Hidden
layer H

Output
layer

<latexit sha1_base64="lcFblN/vP5wyqqVJNWOqF8jepTk=">AAACPHicdVDLSgMxFM34rPWtS0GCRXAhZaZa2+4KbtwUKlpbaIeSSTM2NJMMSUaow/yEW/0W/8O9O3Hr2qRWsKIHAodzHzn3BDGjSrvuizM3v7C4tJxbya+urW9sbm3v3CiRSExaWDAhOwFShFFOWppqRjqxJCgKGGkHo3Nbb98Rqajg13ocEz9Ct5yGFCNtpM6wn3rH0Mv6WwW36LpnpVoFWlIpl6qWeCflmgs9o1gUwBTN/raz3xsInESEa8yQUl3PjbWfIqkpZiTL9xJFYoRH6JZ0DeUoIspPJ4YzeGiUAQyFNI9rOFF/TqQoUmocBaYzQnqoftes+Fetm+iw6qeUx4kmHH99FCYMagHt9XBAJcGajQ1BWFLjFeIhkghrk9HMJrubhX7aoNwE1ZQiyx/CnzZsQ4zuxcypaYNfGd+C2US/Y4P/k5tS0SsX3cvTQh1Os82BPXAAjoAHKqAOLkATtAAGDDyAR/DkPDuvzpvz/tU650xndsEMnI9POOeuLA==</latexit>

h�,�

<latexit sha1_base64="QgFaCJdBWFN3Mq1qKi8L4B4Gmgw=">AAACPHicdVDLSgMxFM3UV62vVpeCBEvBhZSZam3dCW7cCBVtLdShZNJMG5pJhiQj1KE/4Va/xf9w707cujaxFVrRA4HDuY+ce4KYUaVd99XJLCwuLa9kV3Nr6xubW/nCdkuJRGLSxIIJ2Q6QIoxy0tRUM9KOJUFRwMhtMDy39dt7IhUV/EaPYuJHqM9pSDHSRmoPuql3CCvjbr7oll33pHJag5bUqpW6Jd5R9dSFnlEsimCKRrfg7N31BE4iwjVmSKmO58baT5HUFDMyzt0lisQID1GfdAzlKCLKT78Nj2HJKD0YCmke1/BbnZ1IUaTUKApMZ4T0QP2uWfGvWifRYd1PKY8TTTiefBQmDGoB7fWwRyXBmo0MQVhS4xXiAZIIa5PR3Ca7m4V+ekm5CaohxThXgrM2bEOMHsTcqeklvza+BbOJ/sQG/yetStmrlt2r4+IZnGabBbtgHxwAD9TAGbgADdAEGDDwCJ7As/PivDnvzsekNeNMZ3bAHJzPLzq5ri0=</latexit>

h�,�

<latexit sha1_base64="efyfux0MDxfNIw7C4GYIlSYqUO4=">AAACPHicdVDLSgMxFM34rPVVdSlIsBRcSJlprbU7wY0boaKthXYomTTThmaSIckIdZifcKvf4n+4dyduXZtoBSt6IHA495FzTxAzqrTrPjtz8wuLS8u5lfzq2vrGZmFru61EIjFpYcGE7ARIEUY5aWmqGenEkqAoYOQmGJ/Z+s0tkYoKfq0nMfEjNOQ0pBhpI3VG/dQ7hNWsXyi6Zdc9rjTq0JJ6rXJiiVetNVzoGcWiCKZo9recvd5A4CQiXGOGlOp6bqz9FElNMSNZvpcoEiM8RkPSNZSjiCg//TScwZJRBjAU0jyu4af6cyJFkVKTKDCdEdIj9btmxb9q3USHJ35KeZxowvHXR2HCoBbQXg8HVBKs2cQQhCU1XiEeIYmwNhnNbLK7WeinF5SboJpSZPkS/GnDNsToTsycml7wK+NbMJvod2zwf9KulL1a2b08Kp7CabY5sAv2wQHwQB2cgnPQBC2AAQP34AE8Ok/Oi/PqvH21zjnTmR0wA+f9AzyLri4=</latexit>

h�,�
<latexit sha1_base64="4i092zRMVI4rfPf1vP/aAvQvqA0=">AAACN3icdVDLSgMxFM3Ud321uhQkWAVXZWa0tt0JbtwIFa0W2qFk0kwbmkmGJCPWYT7BrX6Ln+LKnbj1D8y0FazogcDh3EfOPX7EqNK2/Wrl5uYXFpeWV/Kra+sbm4Xi1o0SscSkiQUTsuUjRRjlpKmpZqQVSYJCn5Fbf3iW1W/viFRU8Gs9iogXoj6nAcVIG+nqvut2CyW7bNsnbr0KM1KtuLWMOEeVug0do2QogSka3aK12+kJHIeEa8yQUm3HjrSXIKkpZiTNd2JFIoSHqE/ahnIUEuUlY68pPDBKDwZCmsc1HKs/JxIUKjUKfdMZIj1Qv2uZ+FetHeug5iWUR7EmHE8+CmIGtYDZ4bBHJcGajQxBWFLjFeIBkghrE8/Mpmw3C7zkgnKTUUOKNH8Af9rIGiL0IGZOTS74lfEtWGoS/Y4N/k9u3LJTKduXx6XT/Wm2y2AH7IFD4IAqOAXnoAGaAIM+eARP4Nl6sd6sd+tj0pqzpjPbYAbW5xfxO6ya</latexit>x�

<latexit sha1_base64="234rwMF+xLlp4nuQIoZCkA2Lk/U=">AAACN3icdVDLTgIxFO34RHyBLk1MI5K4IjMoAjsSN25IMAiY4IR0SgcbOu2k7Rhxwie41W/xU1y5M279AzuACRg9SZOTcx8993gho0rb9pu1tLyyurae2khvbm3v7Gaye20lIolJCwsm5I2HFGGUk5ammpGbUBIUeIx0vOFFUu/cE6mo4Nd6FBI3QANOfYqRNlLzoRf2Mjm7YNvnxWoZJqRcKlYS4pyWqjZ0jJIgB2Zo9LLW4W1f4CggXGOGlOo6dqjdGElNMSPj9G2kSIjwEA1I11COAqLceOJ1DPNG6UNfSPO4hhN1fiJGgVKjwDOdAdJ36nctEf+qdSPtV9yY8jDShOPpR37EoBYwORz2qSRYs5EhCEtqvEJ8hyTC2sSzsCnZzXw3rlNuMmpIMU7n4byNpCFEj2Lh1LjOm8a3YGOT6E9s8H/SLhacUsG+OsvVjmfZpsABOAInwAFlUAOXoAFaAIMBeALP4MV6td6tD+tz2rpkzWb2wQKsr29h6KzY</latexit> xp

<latexit sha1_base64="s+16G3XYn7ae+D9vU8dSCApq0XI=">AAACOnicdVDLSgMxFM34rPXV6lKQYBVclZlqbbsruHFTqGgf0A6SSTM1NpMMSaZQh/6DW/0Wf8StO3HrB5hpK7SiBwKHcx8593gho0rb9pu1tLyyurae2khvbm3v7Gaye00lIolJAwsmZNtDijDKSUNTzUg7lAQFHiMtb3CZ1FtDIhUV/FaPQuIGqM+pTzHSRmp2hz2h1V0mZ+dt+6JQKcGElIqFckKcs2LFho5REuTADPW7rHXY7QkcBYRrzJBSHccOtRsjqSlmZJzuRoqECA9Qn3QM5Sggyo0ndsfwxCg96AtpHtdwos5PxChQahR4pjNA+l79riXiX7VOpP2yG1MeRppwPP3IjxjUAia3wx6VBGs2MgRhSY1XiO+RRFibhBY2JbuZ78Y1yk1MdSnG6RM4byNpCNGjWDg1rvEb41uwsUn0Jzb4P2kW8k4xb1+f56rHs2xT4AAcgVPggBKogitQBw2AwQN4As/gxXq13q0P63PaumTNZvbBAqyvbyTirjs=</latexit>⋮
<latexit sha1_base64="s+16G3XYn7ae+D9vU8dSCApq0XI=">AAACOnicdVDLSgMxFM34rPXV6lKQYBVclZlqbbsruHFTqGgf0A6SSTM1NpMMSaZQh/6DW/0Wf8StO3HrB5hpK7SiBwKHcx8593gho0rb9pu1tLyyurae2khvbm3v7Gaye00lIolJAwsmZNtDijDKSUNTzUg7lAQFHiMtb3CZ1FtDIhUV/FaPQuIGqM+pTzHSRmp2hz2h1V0mZ+dt+6JQKcGElIqFckKcs2LFho5REuTADPW7rHXY7QkcBYRrzJBSHccOtRsjqSlmZJzuRoqECA9Qn3QM5Sggyo0ndsfwxCg96AtpHtdwos5PxChQahR4pjNA+l79riXiX7VOpP2yG1MeRppwPP3IjxjUAia3wx6VBGs2MgRhSY1XiO+RRFibhBY2JbuZ78Y1yk1MdSnG6RM4byNpCNGjWDg1rvEb41uwsUn0Jzb4P2kW8k4xb1+f56rHs2xT4AAcgVPggBKogitQBw2AwQN4As/gxXq13q0P63PaumTNZvbBAqyvbyTirjs=</latexit>⋮

<latexit sha1_base64="s+16G3XYn7ae+D9vU8dSCApq0XI=">AAACOnicdVDLSgMxFM34rPXV6lKQYBVclZlqbbsruHFTqGgf0A6SSTM1NpMMSaZQh/6DW/0Wf8StO3HrB5hpK7SiBwKHcx8593gho0rb9pu1tLyyurae2khvbm3v7Gaye00lIolJAwsmZNtDijDKSUNTzUg7lAQFHiMtb3CZ1FtDIhUV/FaPQuIGqM+pTzHSRmp2hz2h1V0mZ+dt+6JQKcGElIqFckKcs2LFho5REuTADPW7rHXY7QkcBYRrzJBSHccOtRsjqSlmZJzuRoqECA9Qn3QM5Sggyo0ndsfwxCg96AtpHtdwos5PxChQahR4pjNA+l79riXiX7VOpP2yG1MeRppwPP3IjxjUAia3wx6VBGs2MgRhSY1XiO+RRFibhBY2JbuZ78Y1yk1MdSnG6RM4byNpCNGjWDg1rvEb41uwsUn0Jzb4P2kW8k4xb1+f56rHs2xT4AAcgVPggBKogitQBw2AwQN4As/gxXq13q0P63PaumTNZvbBAqyvbyTirjs=</latexit>⋮

<latexit sha1_base64="Iea4mQUgg9f2zKjUVUGNF+knIIw=">AAACPnicdVDLSgMxFM34rPWtS0GCpeBCyky1tt0V3LgpVLRarMOQSTM2NJMMSUaoQ//CrX6Lv+EPuBO3Lk1qBSt6IHA495FzT5gwqrTrvjgzs3PzC4u5pfzyyura+sbm1qUSqcSkjQUTshMiRRjlpK2pZqSTSILikJGrcHBi61d3RCoq+IUeJsSP0S2nEcVIG+m6H2TeAVSBNwo2Cm7JdY/L9Sq0pFop1yzxDit1F3pGsSiACVrBprN70xM4jQnXmCGlup6baD9DUlPMyCh/kyqSIDxAt6RrKEcxUX42tjyCRaP0YCSkeVzDsfpzIkOxUsM4NJ0x0n31u2bFv2rdVEc1P6M8STXh+OujKGVQC2jvhz0qCdZsaAjCkhqvEPeRRFiblKY22d0s8rMm5SaqlhSjfBH+tGEbEnQvpk7Nmvzc+BbMJvodG/yfXJZLXqXknh0VGnCSbQ7sgD2wDzxQBQ1wClqgDTDg4AE8gifn2Xl13pz3r9YZZzKzDabgfHwCBoyvEg==</latexit>

h�,s�

<latexit sha1_base64="9Q1CPaJEb9HLUFE2Co7jREFeW3Q=">AAACPnicdVDLSgMxFM34tr5aXQoSLAUXUmaqtXVXcNNNoaLVYjuUTJqxoZlkSDJCHfoXbvVb/A1/wJ24dWmiFVrRA4HDuY+ce4KYUaVd98WZm19YXFpeWc2srW9sbmVz21dKJBKTFhZMyHaAFGGUk5ammpF2LAmKAkaug+GZrV/fEamo4Jd6FBM/QrechhQjbaSbQS+tH0LVq4972bxbdN2T0mkFWlIpl6qWeEflUxd6RrHIgwmavZyz1+0LnESEa8yQUh3PjbWfIqkpZmSc6SaKxAgP0S3pGMpRRJSfflkew4JR+jAU0jyu4Zc6PZGiSKlRFJjOCOmB+l2z4l+1TqLDqp9SHieacPz9UZgwqAW098M+lQRrNjIEYUmNV4gHSCKsTUozm+xuFvppg3ITVVOKcaYAp23Yhhjdi5lT0wa/ML4Fs4n+xAb/J1elolcuuufH+RqcZLsCdsE+OAAeqIAaqIMmaAEMOHgAj+DJeXZenTfn/bt1zpnM7IAZOB+fWruvQA==</latexit>

hH ,sH

<latexit sha1_base64="jrBvEBkhS76/GIgdn9Q43jzlyAY=">AAACPHicdVDLSgMxFM34rPXV6lKQYCm4kDJTra07wY0boaKthXYomTTThmaSIckIdZifcKvf4n+4dyduXZtoBSt6IHA495FzTxAzqrTrPjtz8wuLS8u5lfzq2vrGZqG41VYikZi0sGBCdgKkCKOctDTVjHRiSVAUMHITjM9s/eaWSEUFv9aTmPgRGnIaUoy0kTqjfnp+AL2sXyi5Fdc9rp7UoSX1WrVhiXdYO3GhZxSLEpii2S86u72BwElEuMYMKdX13Fj7KZKaYkayfC9RJEZ4jIakayhHEVF++mk4g2WjDGAopHlcw0/150SKIqUmUWA6I6RH6nfNin/VuokOG35KeZxowvHXR2HCoBbQXg8HVBKs2cQQhCU1XiEeIYmwNhnNbLK7WeinF5SboJpSZPky/GnDNsToTsycml7wK+NbMJvod2zwf9KuVrxaxb08Kp3CabY5sAP2wD7wQB2cgnPQBC2AAQP34AE8Ok/Oi/PqvH21zjnTmW0wA+f9A2MKrkM=</latexit>

hH ,�

<latexit sha1_base64="Ya3rmgpB9TConngLwShSndKegto=">AAACPHicdVDLSgMxFM34rPXV6lKQYCm4kDIzWlt3ghs3QkVbC+1QMmmmDc0kQ5IR6tCfcKvf4n+4dyduXZtoBSt6IHA495FzT5gwqrTrPjtz8wuLS8u5lfzq2vrGZqG41VIilZg0sWBCtkOkCKOcNDXVjLQTSVAcMnITjs5s/eaWSEUFv9bjhAQxGnAaUYy0kdrDXnZ+AP1Jr1ByK6577J/UoCW1ql+3xDusnrjQM4pFCUzR6BWd3W5f4DQmXGOGlOp4bqKDDElNMSOTfDdVJEF4hAakYyhHMVFB9ml4AstG6cNISPO4hp/qz4kMxUqN49B0xkgP1e+aFf+qdVId1YOM8iTVhOOvj6KUQS2gvR72qSRYs7EhCEtqvEI8RBJhbTKa2WR3syjILig3QTWkmOTL8KcN25CgOzFzanbBr4xvwWyi37HB/0nLr3jVint5VDqF02xzYAfsgX3ggRo4BeegAZoAAwbuwQN4dJ6cF+fVeftqnXOmM9tgBs77B2TcrkQ=</latexit>

hH ,�

<latexit sha1_base64="ERmMDqgkSeO0dr0Jyb5QCEZ4XH8=">AAACPHicdVDLSgMxFM3Ud31Wl4IEi+BCyky1tu4KbroRKlpbaIeSSTNtaCYZkoxQh/6EW/0W/8O9O3Hr2sRWaEUPBA7nPnLuCWJGlXbdVyezsLi0vLK6ll3f2Nza3snt3imRSEwaWDAhWwFShFFOGppqRlqxJCgKGGkGw0tbb94Tqajgt3oUEz9CfU5DipE2UmvQTWsn8HTc3cm7Bdc9L16UoSXlUrFiiXdaunChZxSLPJii3s05B52ewElEuMYMKdX23Fj7KZKaYkbG2U6iSIzwEPVJ21COIqL89NvwGB4ZpQdDIc3jGn6rsxMpipQaRYHpjJAeqN81K/5Vayc6rPgp5XGiCceTj8KEQS2gvR72qCRYs5EhCEtqvEI8QBJhbTKa22R3s9BPryg3QdWlGGeP4KwN2xCjBzF3anrFb4xvwWyiP7HB/8ldseCVCu71Wb4Kp9mugn1wCI6BB8qgCmqgDhoAAwYewRN4dl6cN+fd+Zi0ZpzpzB6Yg/P5BWaurkU=</latexit>

hH ,�

<latexit sha1_base64="s+16G3XYn7ae+D9vU8dSCApq0XI=">AAACOnicdVDLSgMxFM34rPXV6lKQYBVclZlqbbsruHFTqGgf0A6SSTM1NpMMSaZQh/6DW/0Wf8StO3HrB5hpK7SiBwKHcx8593gho0rb9pu1tLyyurae2khvbm3v7Gaye00lIolJAwsmZNtDijDKSUNTzUg7lAQFHiMtb3CZ1FtDIhUV/FaPQuIGqM+pTzHSRmp2hz2h1V0mZ+dt+6JQKcGElIqFckKcs2LFho5REuTADPW7rHXY7QkcBYRrzJBSHccOtRsjqSlmZJzuRoqECA9Qn3QM5Sggyo0ndsfwxCg96AtpHtdwos5PxChQahR4pjNA+l79riXiX7VOpP2yG1MeRppwPP3IjxjUAia3wx6VBGs2MgRhSY1XiO+RRFibhBY2JbuZ78Y1yk1MdSnG6RM4byNpCNGjWDg1rvEb41uwsUn0Jzb4P2kW8k4xb1+f56rHs2xT4AAcgVPggBKogitQBw2AwQN4As/gxXq13q0P63PaumTNZvbBAqyvbyTirjs=</latexit>⋮

<latexit sha1_base64="f+7gcCilPMEM4g09do3RB4+2iQ0=">AAACNXicdVDLSgMxFM34rPXV6lKQYBVclZlqbbsruHFTaNHaQh0kk2ba0EwyJBmhDvMFbvVb/BYX7sStv2CmrdCKHggczn3k3OOFjCpt22/W0vLK6tp6ZiO7ubW9s5vL790qEUlM2lgwIbseUoRRTtqaaka6oSQo8BjpeKPLtN55IFJRwW/0OCRugAac+hQjbaTW+D5XsIu2fVGqVWBKKuVSNSXOWblmQ8coKQpghuZ93jq86wscBYRrzJBSPccOtRsjqSlmJMneRYqECI/QgPQM5Sggyo0nThN4YpQ+9IU0j2s4UecnYhQoNQ480xkgPVS/a6n4V60Xab/qxpSHkSYcTz/yIwa1gOnZsE8lwZqNDUFYUuMV4iGSCGsTzsKmdDfz3bhBuUmoKUWSPYHzNtKGED2KhVPjBr82vgVLTKI/scH/yW2p6JSLduu8UD+eZZsBB+AInAIHVEAdXIEmaAMMCHgCz+DFerXerQ/rc9q6ZM1m9sECrK9vn+mr9g==</latexit> y

Figure 2.5: Feed-forward neural network with
H hidden layers.

Figure 2.5 shows a deep feed-forward neural network with H hidden layers
(only the �rst and the last hidden layer are actually shown in the �gure). Each
circle represents one “neuron”. Neurons are organized in layers. �e shown
network takes a single vector of feature values x as input and output a scalar
response value y (in general, the output layer can consist of any number of neu-
rons). In the simplest case, every neuron (including the output neurons but ex-
cluding the input features) is a function of the outputs provided by the neurons
in the previous layer.

background & related literature 33

<latexit sha1_base64="1Pnfz6kGJH9hNH+darC0oHRg7Ek=">AAACN3icdVDLSgMxFE181vpqdSlIsAquyky1tt0V3LgpVGpVqEPJpJkamkmGJCPWoZ/gVr/FT3HlTtz6B2baClb0QOBw7iPnHj/iTBvHeYVz8wuLS8uZlezq2vrGZi6/dallrAhtE8mluvaxppwJ2jbMcHodKYpDn9Mrf3Ca1q/uqNJMigszjKgX4r5gASPYWKl133W7uYJTdJyTUq2CUlIpl6opcY/KNQe5VklRAFM0u3m4e9OTJA6pMIRjrTuuExkvwcowwukoexNrGmEywH3asVTgkGovGXsdoQOr9FAglX3CoLH6cyLBodbD0LedITa3+nctFf+qdWITVL2EiSg2VJDJR0HMkZEoPRz1mKLE8KElmChmvSJyixUmxsYzsyndzQMvaTBhM2oqOcoeoJ820oYIP8iZU5OGaFnfko9sot+xof/JZanolovO+XGhvj/NNgN2wB44BC6ogDo4A03QBgT0wSN4As/wBb7Bd/gxaZ2D05ltMAP4+QXvaqyZ</latexit> x�

<latexit sha1_base64="4i092zRMVI4rfPf1vP/aAvQvqA0=">AAACN3icdVDLSgMxFM3Ud321uhQkWAVXZWa0tt0JbtwIFa0W2qFk0kwbmkmGJCPWYT7BrX6Ln+LKnbj1D8y0FazogcDh3EfOPX7EqNK2/Wrl5uYXFpeWV/Kra+sbm4Xi1o0SscSkiQUTsuUjRRjlpKmpZqQVSYJCn5Fbf3iW1W/viFRU8Gs9iogXoj6nAcVIG+nqvut2CyW7bNsnbr0KM1KtuLWMOEeVug0do2QogSka3aK12+kJHIeEa8yQUm3HjrSXIKkpZiTNd2JFIoSHqE/ahnIUEuUlY68pPDBKDwZCmsc1HKs/JxIUKjUKfdMZIj1Qv2uZ+FetHeug5iWUR7EmHE8+CmIGtYDZ4bBHJcGajQxBWFLjFeIBkghrE8/Mpmw3C7zkgnKTUUOKNH8Af9rIGiL0IGZOTS74lfEtWGoS/Y4N/k9u3LJTKduXx6XT/Wm2y2AH7IFD4IAqOAXnoAGaAIM+eARP4Nl6sd6sd+tj0pqzpjPbYAbW5xfxO6ya</latexit>x�

<latexit sha1_base64="234rwMF+xLlp4nuQIoZCkA2Lk/U=">AAACN3icdVDLTgIxFO34RHyBLk1MI5K4IjMoAjsSN25IMAiY4IR0SgcbOu2k7Rhxwie41W/xU1y5M279AzuACRg9SZOTcx8993gho0rb9pu1tLyyurae2khvbm3v7Gaye20lIolJCwsm5I2HFGGUk5ammpGbUBIUeIx0vOFFUu/cE6mo4Nd6FBI3QANOfYqRNlLzoRf2Mjm7YNvnxWoZJqRcKlYS4pyWqjZ0jJIgB2Zo9LLW4W1f4CggXGOGlOo6dqjdGElNMSPj9G2kSIjwEA1I11COAqLceOJ1DPNG6UNfSPO4hhN1fiJGgVKjwDOdAdJ36nctEf+qdSPtV9yY8jDShOPpR37EoBYwORz2qSRYs5EhCEtqvEJ8hyTC2sSzsCnZzXw3rlNuMmpIMU7n4byNpCFEj2Lh1LjOm8a3YGOT6E9s8H/SLhacUsG+OsvVjmfZpsABOAInwAFlUAOXoAFaAIMBeALP4MV6td6tD+tz2rpkzWb2wQKsr29h6KzY</latexit> xp

<latexit sha1_base64="s+16G3XYn7ae+D9vU8dSCApq0XI=">AAACOnicdVDLSgMxFM34rPXV6lKQYBVclZlqbbsruHFTqGgf0A6SSTM1NpMMSaZQh/6DW/0Wf8StO3HrB5hpK7SiBwKHcx8593gho0rb9pu1tLyyurae2khvbm3v7Gaye00lIolJAwsmZNtDijDKSUNTzUg7lAQFHiMtb3CZ1FtDIhUV/FaPQuIGqM+pTzHSRmp2hz2h1V0mZ+dt+6JQKcGElIqFckKcs2LFho5REuTADPW7rHXY7QkcBYRrzJBSHccOtRsjqSlmZJzuRoqECA9Qn3QM5Sggyo0ndsfwxCg96AtpHtdwos5PxChQahR4pjNA+l79riXiX7VOpP2yG1MeRppwPP3IjxjUAia3wx6VBGs2MgRhSY1XiO+RRFibhBY2JbuZ78Y1yk1MdSnG6RM4byNpCNGjWDg1rvEb41uwsUn0Jzb4P2kW8k4xb1+f56rHs2xT4AAcgVPggBKogitQBw2AwQN4As/gxXq13q0P63PaumTNZvbBAqyvbyTirjs=</latexit>⋮
<latexit sha1_base64="s+16G3XYn7ae+D9vU8dSCApq0XI=">AAACOnicdVDLSgMxFM34rPXV6lKQYBVclZlqbbsruHFTqGgf0A6SSTM1NpMMSaZQh/6DW/0Wf8StO3HrB5hpK7SiBwKHcx8593gho0rb9pu1tLyyurae2khvbm3v7Gaye00lIolJAwsmZNtDijDKSUNTzUg7lAQFHiMtb3CZ1FtDIhUV/FaPQuIGqM+pTzHSRmp2hz2h1V0mZ+dt+6JQKcGElIqFckKcs2LFho5REuTADPW7rHXY7QkcBYRrzJBSHccOtRsjqSlmZJzuRoqECA9Qn3QM5Sggyo0ndsfwxCg96AtpHtdwos5PxChQahR4pjNA+l79riXiX7VOpP2yG1MeRppwPP3IjxjUAia3wx6VBGs2MgRhSY1XiO+RRFibhBY2JbuZ78Y1yk1MdSnG6RM4byNpCNGjWDg1rvEb41uwsUn0Jzb4P2kW8k4xb1+f56rHs2xT4AAcgVPggBKogitQBw2AwQN4As/gxXq13q0P63PaumTNZvbBAqyvbyTirjs=</latexit>⋮

<latexit sha1_base64="RXaQAL+7nyZFVtUNmP0VTu/cMZY=">AAACN3icdVDLSgMxFE181vpqdSlIsAquyky1tt0V3LgpVGpVqEPJpJkamkmGJKPUoZ/gVr/FT3HlTtz6B2baClb0QOBw7iPnHj/iTBvHeYVz8wuLS8uZlezq2vrGZi6/dallrAhtE8mluvaxppwJ2jbMcHodKYpDn9Mrf3Ca1q/uqNJMigszjKgX4r5gASPYWKl133W7uYJTdJyTUq2CUlIpl6opcY/KNQe5VklRAFM0u3m4e9OTJA6pMIRjrTuuExkvwcowwukoexNrGmEywH3asVTgkGovGXsdoQOr9FAglX3CoLH6cyLBodbD0LedITa3+nctFf+qdWITVL2EiSg2VJDJR0HMkZEoPRz1mKLE8KElmChmvSJyixUmxsYzsyndzQMvaTBhM2oqOcoeoJ820oYIP8iZU5OGaFnfko9sot+xof/JZanolovO+XGhvj/NNgN2wB44BC6ogDo4A03QBgT0wSN4As/wBb7Bd/gxaZ2D05ltMAP4+QXtl6yY</latexit>w�

<latexit sha1_base64="MBlSvrzifRi2fmI4VdlTTUyMKNU=">AAACN3icdVDLSgMxFM3Ud321uhQkWAVXZWa0tt0JbtwIFa0W2qFk0kwbmkmGJKPUYT7BrX6Ln+LKnbj1D8y0FazogcDh3EfOPX7EqNK2/Wrl5uYXFpeWV/Kra+sbm4Xi1o0SscSkiQUTsuUjRRjlpKmpZqQVSYJCn5Fbf3iW1W/viFRU8Gs9iogXoj6nAcVIG+nqvut2CyW7bNsnbr0KM1KtuLWMOEeVug0do2QogSka3aK12+kJHIeEa8yQUm3HjrSXIKkpZiTNd2JFIoSHqE/ahnIUEuUlY68pPDBKDwZCmsc1HKs/JxIUKjUKfdMZIj1Qv2uZ+FetHeug5iWUR7EmHE8+CmIGtYDZ4bBHJcGajQxBWFLjFeIBkghrE8/Mpmw3C7zkgnKTUUOKNH8Af9rIGiL0IGZOTS74lfEtWGoS/Y4N/k9u3LJTKduXx6XT/Wm2y2AH7IFD4IAqOAXnoAGaAIM+eARP4Nl6sd6sd+tj0pqzpjPbYAbW5xfvaKyZ</latexit>w�

<latexit sha1_base64="VNKXOmeyxGq4xYMZkwn7xc35DpA=">AAACN3icdVDLTgIxFO34RHyBLk1MI5K4IjMoAjsSN25IMAiY4IR0SgcbOu2k7Whwwie41W/xU1y5M279AzuACRg9SZOTcx8993gho0rb9pu1tLyyurae2khvbm3v7Gaye20lIolJCwsm5I2HFGGUk5ammpGbUBIUeIx0vOFFUu/cE6mo4Nd6FBI3QANOfYqRNlLzoRf2Mjm7YNvnxWoZJqRcKlYS4pyWqjZ0jJIgB2Zo9LLW4W1f4CggXGOGlOo6dqjdGElNMSPj9G2kSIjwEA1I11COAqLceOJ1DPNG6UNfSPO4hhN1fiJGgVKjwDOdAdJ36nctEf+qdSPtV9yY8jDShOPpR37EoBYwORz2qSRYs5EhCEtqvEJ8hyTC2sSzsCnZzXw3rlNuMmpIMU7n4byNpCFEj2Lh1LjOm8a3YGOT6E9s8H/SLhacUsG+OsvVjmfZpsABOAInwAFlUAOXoAFaAIMBeALP4MV6td6tD+tz2rpkzWb2wQKsr29gFazX</latexit>wp

<latexit sha1_base64="dZahAMkVAk346xxHKR2DKUk1rE0=">AAACTXicdVDLSgMxFM3Ud31VXbgQJFgF3ZSZaq1dCAU3bgoVrQrtOGTSTA1mkiHJqHWYr3Gr3+LaD3EnYqZWsKIXAodzzr259/gRo0rb9quVGxufmJyansnPzs0vLBaWls+ViCUmLSyYkJc+UoRRTlqaakYuI0lQ6DNy4d8cZfrFLZGKCn6m+xFxQ9TjNKAYaUN5hdVgu6Pi0EvooZNeRfDeo/DOozteoWiXbHu/XKvCDFQr5YMMOLuVmg0dw2RVBMNqekvWeqcrcBwSrjFDSrUdO9JugqSmmJE034kViRC+QT3SNpCjkCg3GVyQwi3DdGEgpHlcwwH7syNBoVL90DfOEOlr9VvLyL+0dqyDAzehPIo14fjroyBmUAuYxQG7VBKsWd8AhCU1u0J8jSTC2oQ2MimbzQI3aVBukmtKkea34M81MkOEHsTIqUmDn5q9BUtNot+xwf/BebnkVEr2yV6xvjnMdhqsgQ2wDRxQBXVwDJqgBTBIwSN4As/Wi/VmvVsfX9acNexZASOVm/oEneGzrg==</latexit>

f (p�
i=�

xiwi)

Weight

Non-linear activation function

Output
Inputs

Linear function of inputs

Figure 2.6: Single neuron of a feed-forward
neural network.

Figure 2.6 shows a single neuron of the �rst hidden layer in greater detail.
Each arrow can be thought of as a weight that determines the importance of the
respective input feature for that neuron.�e output of the neuron is computed
as follows. First, the neuron computes the linear weighted sum of the features,
given by ∑p

i=1 w i x i . �e output of that linear function is then sent through a
non-linear activation function f to produce the neuron’s output. Neurons in all
other hidden layers look the same, except for the inputs, which are the outputs
of the previous layer’s neurons (rather than the input features).�e output neu-
rons do also take the same form, however, their activation functions are o�en
di�erent from those of the neurons in the hidden layers, in order to match the
desired output format.

2.2 models of bounded rationality

Models of bounded rationality are prediction or decision-making models that
take into consideration the cognitive limitations of the decision-maker’s mind,
and the limited data and time available to the decision maker in many real-
world decision tasks.11 Many of these models can be described by cognitively 11 Simon (1997) and Gigerenzer et al. (1999)

plausible processes that build on simple concepts and building blocks such as
pair-wise comparisons or the summation of few values.�is stands in contrast
to more involved techniques such as calculating numerical gradients or invert-
ing large matrices, which are o�en required to learn the parameters of more
complex models from the machine learning literature.
More o�en than not, simple models of bounded rationality do not need to

be de�ned as the solution to a mathematical optimization problem but instead
can be described by a simple mechanism that searches for a good-enough so-
lution.�e fact that most models of bounded rationally can also be formulated
as the solution to some constrained optimization problem is irrelevant here. It
is the fact that these models arrive at good solutions without having to perform
costly optimization procedures that makes them interesting candidates for the
purposes of this dissertation.
In this section I discuss existing boundedly rational prediction models that

34

can be formalized in the supervised learning framework. �at is, these mod-
els take a set of features as input and output a response variable (the type of
which depends on the prediction task at hand), and the model’s parameters
are learned using a training data set. Compared to more complex supervised
learning models such as deep neural networks, boundedly rational supervised
learning models do not necessarily use all of the available information (that is,
features), or they combine di�erent pieces of information in very simple ways,
for example, by giving them equal weight.12 12 Şimşek (2013) and Gigerenzer et al. (1999),

see also Section 3.3.�e psychological literature has produced and studied a range of boundedly
rational, feature-based predictive models including fast-and-frugal heuristics13 13 Gigerenzer and Goldstein (1996) and

Gigerenzer et al. (1999, 2011)and simple regression models.14 In the remainder of this section Iwill present two
14 A history and an extensive literature review
of simple regression models is provided in
Section 3.3.

general strategies that are used bymany boundedly rational models. I formalize
the corresponding models as instances of the general linear model discussed in
the previous section, which facilitates their comparison with other supervised
learning models. First, however, I de�ne and discuss an important building
block of various models of bounded rationality: feature directions.

2.2.1 Feature directions

�e direction of a feature in a linear model is de�ned as the sign of the cor-
responding weight, which can be positive or negative. Feature directions are
building blocks formanymodels of bounded rationality including lexicographic
heuristics and equal-weighting strategies, as described in the upcoming sec-
tions.
An environment is said to be directable if the directions of the features are

known. In a directable environment, features can be “directed” so that the
weights are all positive (for example, by recoding any feature with a negative
weight by multiplying its values by −1).
In many problems feature directions are known beforehand, for instance,

when the problem is naturally constrained to have only positive weights.15 In 15 For example mixing problems, see Slawski
and Hein (2013) and references therein.other problems, features can be directed intuitively by the user, as supported by

experimental evidence.16 Even without any prior knowledge, directions can be 16 Dana and�omas (2006) and Katsikopou-
los et al. (2010)estimated from relatively few training data in single-shot tasks.17 In Chapter 5 I
17 Şimşek and Buckmann (2015)present an algorithm to learn feature directions in sequential decision-making

tasks.

2.2.2 Lexicographic models

Lexicographic models18 are a class of boundedly rational models for choosing 18 Fishburn (1974), Gigerenzer and Goldstein
(1996), and Şimşek (2020b)among decision alternatives. A lexicographic model considers features sequen-

tially in a given order and makes a prediction based on the �rst discriminating
feature that is found. A speci�c lexicographic model thus has to answer the
two questions: What is a discriminating feature, that is, when does one stop
the search for more information? And how to determine the order in which
features are considered? Next follows a brief description of a widely studied

background & related literature 35

lexicographic model for the paired comparison task.
�e take-the-best heuristic19 is a lexicographic paired comparisonmodel that 19 Gigerenzer and Goldstein (1996)

orders available features by decreasing validity20 and makes a decision based 20 �e (empirical) validity of a feature in a
paired comparison task is the accuracy (ratio
of correct inferences) of that feature among
pairwise comparisons on which the feature
discriminates, see, for example, Şimşek and
Buckmann (2015).

on the �rst feature that discriminates between the two alternatives. A feature
discriminates between two alternatives if the corresponding two feature values
are di�erent.
Take-the best can be formulated as a linear paired-comparison model as fol-

lows. Assume that the features variables x1 , x2 , . . . , xp are ordered by decreasing
validity and that all feature weights are positive.21 �en the take-the-best model 21 If a certain feature weight is known to be

negative, the corresponding feature can be di-
rected by inverting the feature values, see also
Section 2.2.1.

is equivalent to a linear paired-comparison model whose weight vector β satis-
�es the non-compensatoriness constraints

β i > p∑
j=i+1 β j , for i = 1, 2, . . . , p − 1,

where p is the number of predictors.22 For example, a set of non-compensatory 22Martignon and Ho�rage (1999, 2002)

weights is given by the sequence of exponentially decaying weights

β1 = 12 , β2 = 14 , β3 = 18 , . . . , βp = 1
2p .

�ese models are called non-compensatory because the decision is made based
on the satisfying feature alone—the remaining features that have not yet been
considered cannot compensate or overturn this decision.
To use a take-the-best model, the decision maker thus needs to be able to

rank features by decreasing validity and needs to know all feature directions.
Despite its low requirements and limited expressiveness, the take-the-best heuris-
tic has been found to perform remarkably well in various empirical compar-
isons to complexmachine learningmodels, including arti�cial neural networks,
support-vector machines, random forests, and elastic-net regularized linear re-
gression.23 23 Czerlinski et al. (1999), Brighton (2006),

Şimşek andBuckmann (2015), andBuckmann
and Şimşek (2017)

�e next section presents a di�erent model of bounded rationality, which is
arguably even simpler than a lexicographic model because it does not require
the decision maker to order the features in any way.

2.2.3 Equal-weighting strategies

Equal-weighting strategies attribute equal importance to each feature. �ey
are regularly used in various real-world decision-making tasks under uncer-
tainty.24 One example is given by equal-weighted index funds for stock market 24 Katsikopoulos et al. (2020)

investments, which present a simple and e�ective investment strategy.25 Equal- 25 DeMiguel et al. (2009b,a)

weighting strategies are also frequently used in group decision-making across
various politics and business contexts in the form of simple majority voting.26 26 Galesic et al. (2018)

Models of equal-weighting strategies (or simply, equal-weighting models) have
a long history of use in the social sciences.�ey appeared in a seminal paper by
Dawes and Corrigan (1974) that showed that even so-called improper models
(such as equal-weightingmodels) could outperform human expert judgements.

36

�e article also demonstrated that these models can compete well with OLS on
real-world data sets, stimulating further work on equal-weightingmodels in the
1970s, continuing to this day.27 27 Einhorn andHogarth (1975),Wainer (1976),

Gigerenzer et al. (1999), and Katsikopoulos et
al. (2020). See also Section 3.3 for a review on
equal-weighting models speci�cally in the re-
gression task.

Equal-weighting models can take di�erent forms depending on the predic-
tion task they are used in. In the regression task itmakes sense to think of “equal
importance of features” as “feature weights having equal magnitudes”. �at is,
every feature contributes equally to the outcome, but that contribution can be
positive or negative. Formally, this can be achieved by a linear model whose
weights satisfy the constraints

∣β1∣ = ∣β2∣ = ⋅ ⋅ ⋅ = ∣βp ∣.
In this case, the decision maker needs to decide the direction of each feature
and the overall scale (that is, the magnitude of all weights).
In some prediction tasks, however, the linear model is invariant to scaling of

feature weights and the magnitude of the equal-weighting constant can thus be
set arbitrarily.28 In such a case the decision maker only has to estimate feature 28 For instance, the linear discrete choice

model considered in Chapter 5 is invariant to
scale.

directions to use the equal-weighting model.
�e model further simpli�es in resource allocation problems, where the task

is to distribute a �nite set of resources among competing alternatives. A weight
here corresponds to the proportion of resources allocated to the corresponding
alternative and thus has to be non-negative. Furthermore, all the weights have
to sum to one, leading to β i = 1

p , for all features i = 1, . . . , p. For example, in a
traditional portfolio allocation problem, the equal-weighting strategy is to allo-
cate the same amount of funds to each asset or asset class under consideration.
�is strategy, also called the 1N -rule, was found to outperformmany other, more
data-driven investment strategies.29 29 DeMiguel et al. (2009b,a)

2.3 reinforcement learning

In this section I present the reinforcement learning algorithms that are used
or modi�ed in later parts of this dissertation.�is section builds heavily on the
textbook by Sutton andBarto (2018).�e reader is referred to the same textbook
for a more thorough introduction to reinforcement learning.
Reinforcement learning is concerned with a decision maker (called agent)

who learns how to solve a sequential decisionmaking problem.�e agent learns
by repeatedly interacting with its (decision-making) environment. �e agent
receives feedback on its actions in the form of a reward signal. We make the
convenient assumption that the interaction between agent and environment can
be modeled as a Markov devision process, or MDP.30 30 �is assumption is made by most research

work in reinforcement learning. And indeed,
all sequential decision problems considered
in this dissertation can be modeled as MDPs.▸ Markov decision processes. Figure 2.7 summarizes the agent-environment

interaction in a MDP. In a given decision stage (or time step) t, the agent ob-
serves the current con�guration (or state) of the environment, given by st . �e
agent chooses an action at based only on the information contained in the state

background & related literature 37

description st . �e agent then executes action at , which possibly changes the
state of the environment.�e agent receives the reward rt and observes the new
state st+1.�e information contained in the state description of st+1 is then used
to choose the next action at+1, and so on.

reward stateaction
<latexit sha1_base64="prgnKvm5sJHPtNSLah7aqBtKedM=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqjnu5l83bRti9KlxWYkkq5VE2Jc1a+tKFjlBR5MEOtl7OOun2Bo4BwjRlSquPYoXZjJDXFjCSZbqRIiPAIDUjHUI4Cotx44jWBBaP0oS+keVzDiTo/EaNAqXHgmc4A6aH6XUvFv2qdSPtVN6Y8jDThePqRHzGoBUwPh30qCdZsbAjCkhqvEA+RRFibeBY2pbuZ78a3lJuMalIkmQKct5E2hOhRLJwa3/K68S1YYhL9iQ3+T5qlolMu2nfn+auTWbYb4BAcg1PggAq4AjegBhoAgwF4As/gxXq13q0P63PaumTNZg7AAqyvbz83rMU=</latexit>at

<latexit sha1_base64="vQoYADO05jV09fUpJSm4MxuPt3Q=">AAACN3icdVDLSgMxFE18W5/VpSDBKrgqmWpt3Qlu3AiV2iq0Q8mkmRrMJEOSEerQT3Cr3+KnuHInbv0DM22FVvRA4HDuI+eeIBbcWIzf4Mzs3PzC4tJybmV1bX1jM7/VNCrRlDWoEkrfBsQwwSVrWG4Fu401I1Eg2E1wf57Vbx6YNlzJa9uPmR+RnuQhp8Q6qa47trNZwEWMT0qnFZSRSrlUzYh3VD7FyHNKhgIYo9bJw912V9EkYtJSQYxpeTi2fkq05VSwQa6dGBYTek96rOWoJBEzfjr0OkAHTumiUGn3pEVDdXIiJZEx/ShwnRGxd+Z3LRP/qrUSG1b9lMs4sUzS0UdhIpBVKDscdblm1Iq+I4Rq7rwiekc0odbFM7Up2y1CP73k0mVU02qQO0CTNrKGmDyqqVPTS1l3vpUYuER/YkP/k2ap6JWL+Oq4cLY/znYJ7IA9cAg8UAFn4ALUQANQ0ANP4Bm8wFf4Dj/g56h1Bo5ntsEU4Nc3Xjqs1g==</latexit>rt
<latexit sha1_base64="czK2+WeJpY3KyWgJWGoj3BNay10=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqrnu5l83bRti9KlxWYkkq5VE2Jc1a+tKFjlBR5MEOtl7OOun2Bo4BwjRlSquPYoXZjJDXFjCSZbqRIiPAIDUjHUI4Cotx44jWBBaP0oS+keVzDiTo/EaNAqXHgmc4A6aH6XUvFv2qdSPtVN6Y8jDThePqRHzGoBUwPh30qCdZsbAjCkhqvEA+RRFibeBY2pbuZ78a3lJuMalIkmQKct5E2hOhRLJwa3/K68S1YYhL9iQ3+T5qlolMu2nfn+auTWbYb4BAcg1PggAq4AjegBhoAgwF4As/gxXq13q0P63PaumTNZg7AAqyvb2ANrNc=</latexit>st

<latexit sha1_base64="qYAUWAEX9Y20fg6cWngSV1FhwbI=">AAACO3icdVDLSgMxFM34rPVZXQoSrIIglJlqbbsruHFTqGhtoQ4lk2Y0NJMMSUaoQz/CrX6LH+Lanbh1b9JWaEUPBA7nPnLuCWJGlXbdN2dufmFxaTmzkl1dW9/Y3Mpt3yiRSEyaWDAh2wFShFFOmppqRtqxJCgKGGkF/XNbbz0Qqajg13oQEz9Cd5yGFCNtpJbqpvrYG3a38m7Bdc+K1TK0pFwqVizxTkpVF3pGsciDCRrdnLN32xM4iQjXmCGlOp4baz9FUlPMyDB7mygSI9xHd6RjKEcRUX468juEh0bpwVBI87iGI3V6IkWRUoMoMJ0R0vfqd82Kf9U6iQ4rfkp5nGjC8fijMGFQC2iPhz0qCdZsYAjCkhqvEN8jibA2Ec1ssrtZ6Kd1yk1ODSmG2UM4bcM2xOhRzJya1vmV8S2YTfQnNvg/uSkWvFLBvTzN1w4m2WbALtgHR8ADZVADF6ABmgCDPngCz+DFeXXenQ/nc9w650xmdsAMnK9vZcWuUw==</latexit>st+�

<latexit sha1_base64="wqPbzpDbsqygInuRYe6hyBgFzGI=">AAACO3icdVDLSgMxFM34rPVZXQoSrIIglJlqbbsruHFTqGhtoQ4lk2Y0NJMMSUaoQz/CrX6LH+Lanbh1b9JWaEUPBA7nPnLuCWJGlXbdN2dufmFxaTmzkl1dW9/Y3Mpt3yiRSEyaWDAh2wFShFFOmppqRtqxJCgKGGkF/XNbbz0Qqajg13oQEz9Cd5yGFCNtpJbspvrYG3a38m7Bdc+K1TK0pFwqVizxTkpVF3pGsciDCRrdnLN32xM4iQjXmCGlOp4baz9FUlPMyDB7mygSI9xHd6RjKEcRUX468juEh0bpwVBI87iGI3V6IkWRUoMoMJ0R0vfqd82Kf9U6iQ4rfkp5nGjC8fijMGFQC2iPhz0qCdZsYAjCkhqvEN8jibA2Ec1ssrtZ6Kd1yk1ODSmG2UM4bcM2xOhRzJya1vmV8S2YTfQnNvg/uSkWvFLBvTzN1w4m2WbALtgHR8ADZVADF6ABmgCDPngCz+DFeXXenQ/nc9w650xmdsAMnK9vY+6uUg==</latexit>rt+�

Agent

Environment

Figure 2.7: Agent-environment interface in a
Markov decision process (MDP).�e �gure is
adapted from Sutton and Barto (2018, p. 48).

More formally, an MDP is de�ned by the tuple (S ,A, P, r, γ, ρ0), where
S is a set of states, which describe the current con�guration of the decision
environment;

A is a set of actions that the agent can execute (A(s) denotes the set of actions
executable in state s);

P(st+1∣at , st) ∶ S ×A(s) × S → [0, 1] de�nes transition probabilities, that is,
the probability of arriving in state st+1 a�er executing action at in state st ;

R(st , at , st+1) ∶ S ×A(s) × S → R is the reward function;

γ is a temporal discount factor, which de�nes the relative importance between
future and immediate rewards; and

ρ0 is the distribution from which the initial state s0 is drawn.

In every time step t, the agent executes an action at in state st , observes a new
state st+1 ∼ P(st+1∣at , st), and receives a reward rt = R(st , at , st+1). In most
cases, neither the transition model nor the reward function is known to the
agent and the agent can only learn through trial-and-error. In this dissertation,
I focus on discrete actions sets. �e number of actions in an action set is given
by the cardinality of the action set, denoted by ∣A∣. �e number of available
actions in a state s is given by ∣A(s)∣.�e number of available actions can di�er
between di�erent states.

�e objective in reinforcement learning is to �nd an optimal behavioral pol-
icy. A policy de�nes the agent’s behavior at a given time, and is usually a func-
tion of the current state of the environment. A deterministic policy π(s) ∶ S →A(s) maps a state s ∈ S to an action a from the set of actions available in that

38

state, given by A(s). A stochastic policy π(a∣s) ∶ A(s) × S → [0, 1] is a prob-
ability distribution over actions in A(s). An optimal policy, denoted by π∗, is
a policy that maximizes the expected future cumulative reward, which is also
called expected return, and is given by Es0∼ρ0 ,a t∼π(s t)[∑∞t=0 rt].
�e following two subsections describes the two general reinforcement learn-
ing approaches that provide the foundations for the algorithms proposed in
this dissertation. Value-based methods will play a central role in Chapter 6.
Classi�cation-based reinforcement learning is the basis for the algorithms de-
scribed in Chapter 5.

2.3.1 Value-based reinforcement learning

Value-based control algorithms learn a state-action value function to structure
the search for an optimal policy. �e state-action value function (or shorter,
action-value function) with respect to some policy π, denoted by

qπ(s, a) = Ea t∼π(s t),t>0[∞∑
t=0 γ trt ∣s0 = s, a0 = a],

is the expected reward obtained by the agent a�er taking action a in state s and
following π therea�er. Closely related to the action-value function is the so-
called state-value function, given by

vπ(s) = Ea t∼π(s t),t≥0[∞∑
t=0 γ trt ∣s0 = s].

Given an optimal value-function, de�ned by q∗(s, a) = maxπ qπ(s, a), an op-
timal policy can be obtained by calculating the greedy policy with respect to the
optimal value function, given by

π∗(s) = argmax
a∈A(s) q∗(s, a).

Value-based reinforcement learning algorithms try to approximate the optimal
value function as closely as possible and then compute the greedy policy with
respect to that approximated value function to obtain an approximately optimal
policy.�e agent usually starts by initializing the action-values of all actions in
non-terminal states to a random number (or simply, to zero). During learning,
these values are periodically updated with the aim to get the estimates closer
to the true action-values. Next I describe a widely studied class of value-based
reinforcement learning algorithms called temporal-di�erence learning.

▸ Temporal-difference learning. To make an update to the action-value
function, temporal-di�erence algorithms require only information gathered in
the current transition as opposed to information gathered throughout an entire
episode,31 or access to the transition model of the MDP.32 31 Such as Monte Carlo methods, see Sutton

and Barto (2018, Chapter 5).
32 Such as dynamic programming methods,
see Sutton and Barto (2018, Chapter 4).

One of the canonical tabular temporal-di�erence reinforcement learning al-
gorithms is called Sarsa. In every time step the Sarsa algorithm updates the

background & related literature 39

action value of the current state-action pair, using �ve pieces of information:
st , at , rt , st+1 , and at+1. �e value function update rule for the tabular Sarsa al-
gorithm is given by

q(st , at)← (1 − α)q(st , at) + α[rt + q(st+1 , at+1)], (2.4)

where 0 < α < 1 is a learning rate parameter.
During learning, actions are chosen based on the current action-value es-

timates. If the agent always chooses the action that is currently believed to be
best, it can get stuck in a local optimum. �at is, the agent does not �nd out
about a better action in a given state simply because that action is never tried
out, or not o�en enough. We say, the agent does not explore (enough).
One approach that guarantees enough exploration during the learning pro-

cess is to use an ε-greedy policy. �e ε-greedy policy takes a random action
with probability ε and the greedy action with probability 1− ε. Algorithm 1 pro-
vides pseudo code for the tabular Sarsa algorithm with ε-greedy exploration. It
is called “tabular”, because the action-value estimates can be simply stored in a
table.

Algorithm 1Tabular Sarsa with ε-greedy exploration. Adapted from Sutton and
Barto (2018, p. 130).
Output:
q, an action-value function.
Input:
q(s, a) for all s ∈ S , a ∈ A(s) // table of action-values
α ∈ (0, 1] // learning rate
ε ∈ [0, 1] // exploration parameter
γ ∈ [0, 1] // discount factor

Initialize all q(s, a) arbitrarily, except that q(terminal, ⋅) = 0
for each episode do
Initialize s0
Choose a0 from s0 using ε-greedy policy derived from current q
for each time step t = 0, 1, 2, . . . of the episode do
Take action at , observe rt , st+1
Choose at+1 from st+1 using ε-greedy policy derived from current q
q(st , at)← (1 − α)q(st , at) + α[rt + γq(st+1 , at+1)] // Equation 2.4
st ← st+1; at ← at+1

end for
end for

▸ Function approximation in reinforcement learning.�e state spaces
of interesting sequential decisionmaking problems are usually too large to learn
and maintain a table of action values for each state-action pair. Function ap-
proximationmethods approximate the action-value function by a parametrized,

40

mathematical function that takes as input a set of features describing the action
(in the current state) and that produces as output the corresponding value es-
timate.33 More formally, let ϕ(s, a) ∈ Rp denote a feature vector describing 33 �e term “function approximation meth-

ods” is oddly unspeci�c but actually refers
quite speci�cally to a set of well-known
methods within reinforcement learning re-
search (Sutton and Barto, 2018, Part II).
Sometimes, the almost equally unspeci�c
term “reinforcement learning with function
approximation” is used.

the state action pair (s, a). �e approximated action-value function is then a
function q̂(s, a, θ) ∶ S ×A ×Rd → R, where θ ∈ Rd is a parameter vector.
For value-based reinforcement learning algorithms, learning then consists

of �nding θ such that the approximated value function q̂(s, a, θ) is close to the
true value function q(s, a) for all state-action pairs.

�e function-approximated equivalent of the tabular Sarsa algorithm is called
semi-gradient Sarsa with function approximation.34 Its update rule is given by 34 Sutton and Barto (2018, Section 10.1).

θ ← θ + α[rt + q̂(st+1 , at+1 , θ) − q̂(st , at , θ)]∇θ q̂(st , at , θ), (2.5)

where 0 < α < 1 is a learning rate as in the tabular case and∇θ denotes the vec-
tor of partial derivatives with respect to the individual elements of θ (the pa-
rameters), or formally, ∇θ q̂(st , at , θ) = [∂ q̂(s t ,a t ,θ)

∂θ 1 , ∂ q̂(s t ,a t ,θ)
∂θ2 , . . . , ∂ q̂(s t ,a t ,θ)

∂θd
].

Many successful applications parametrize q̂ as a linear function or a deep neu-
ral network, both of which are easily di�erentiable with respect to their model
parameters and therefore keep the computational requirements of an update
step (Equation 2.5) relatively low. Algorithm 2 provides pseudo code for semi-
gradient Sarsa with function approximation and ε-greedy exploration.

Algorithm 2 Semi-gradient Sarsa with function approximation and ε-greedy
exploration. Adapted from Sutton and Barto (2018, p. 244).
Output:
q̂, an approximated action-value function.
Input:
q̂(s, a, θ) ∶ S ×A ×Rd → R // di�erentiable action-value function
α ∈ (0, 1] // learning rate
ε ∈ [0, 1] // exploration parameter
γ ∈ [0, 1] // discount factor

Initialize θ arbitrarily
for each episode do
Initialize s0
Choose a0 from s0 using ε-greedy policy derived from current q̂
for each time step t = 0, 1, 2, . . . of the episode do
Take action at , observe rt , st+1
if st+1 is terminal then

θ ← θ + α[rt − q̂(st , at , θ)]∇θ q̂(st , at , θ)
Go to next episode

end if
Choose at+1 from st+1 using ε-greedy policy derived from current v
θ ← θ + α[rt + γq̂(st+1 , at+1 , θ) − q̂(st , at , θ)]∇θ q̂(st , at , θ) // Eq. 2.5
st ← st+1 ; at ← at+1

end for
end for

background & related literature 41

2.3.2 Classi�cation-based reinforcement learning

In some domains, value functions are di�cult to learn from limited data.35 �e 35 For example, because the action value esti-
mates inherently show high variance. A good
example for this is Tetris, as discussed further
in Section 5.6.1.

reinforcement learning algorithms discussed in this subsection directly approx-
imate the optimal policy without the help of an explicit action-value function.
Instead, these algorithms interpret policy learning as a classi�cation problem.36 36 Lagoudakis and Parr (2003), Fern et al.

(2004), Li et al. (2007), Lazaric et al. (2016),
and Scherrer et al. (2015)

More speci�cally, the policy is learned from a training set of existing input-
output pairs, where the input is the feature description of a state and the output
is an optimal action. �is has the advantage that the algorithm designer can
choose from a large range of proven classi�cation algorithms including linear
classi�ers, random forests, support vector machines, or neural networks, which
were shown to generalize well to unseen observations. �e hope is that the
policy, learned on a limited training data set of optimal decisions, generalizes
well and produces optimal (or near-optimal) behavior on the entire MDP.

�e problem is that such a data set of optimal decisions is not available for
most MDPs. �e agent therefore has to build the training data set on its own,
through interaction with the environment, or a simulation thereof. �e big
challenge is that the agent usually starts o� with a random policy, which makes
it di�cult to �nd an optimal (or at least near-optimal) action for a given state
to begin with.

▸ Rollouts are one way of using the current policy to generate a training in-
stance for the classi�cation data set (that is, to �nd an approximately optimal
action in a given state). Rollouts work as follows.
First, the value of each available action in a given state is approximated by

the cumulative sum of rewards obtained in a �nite-length forward simulation
of the environment, in which the �rst action is the action to be evaluated and
the following actions are chosen according to a rollout policy.37 �e action with 37 In many cases the rollout policy is simply

the agent’s current policy or some modi�ca-
tion thereof, for example, the current policy
with added or reduced exploration behavior.

the highest approximate value then becomes the class label for that state.
Formally, let G(s, a) ∶ S × A(s) → S × R denote a generative model (or

simulator), which allows to sample a next state s′ and reward r for a given state
action pair (s, a) without changing the true state of the environment and let ŝ
denote the state for which we wish to �nd the optimal action (sometimes called
the rollout starting state). Furthermore, let π̂ ∶ S → A denote a rollout policy. A
rollout trajectory for action a ∈ A(ŝ) in state ŝ of length T is given by

ŝ, a, r0 , s1 , a1 , r1 , . . . , sT , aT , rT ,

where s1 , r0 ∼ G(ŝ, a), st+1 , rt ∼ G(st , at) for t ≥ 1, and at = π̂(st) for t ≥ 1.�e
approximated action value is given by Û(ŝ, a) = ∑T

t=0 rt . Sometimes, the ap-
proximated action value is averaged across multiple rollouts. �e classi�cation
label is determined by determining the action with the highest approximated
value, given by â = argmaxa∈A(ŝ) Û(ŝ, a).
Algorithm3provides pseudo-code for the rollout procedure for a single state-

action pair.

42

Algorithm 3 Rollout(s, a, πr): Rollout procedure for estimating the value of
an action a in state s using rollout policy πr .
Output:
Û ∈ R, estimated value of taking action a in s
Input:
s ∈ S // rollout starting state
a ∈ A(s) // action to be evaluated
πr(s) ∶ S → A // rollout policy
M ∈ N // number of rollouts
T ∈ N // rollout length
γ ∈ [0, 1] // discount factor
G(s, a) ∶ S ×A(s)→ S ×R // generative model

for all j = 1, . . . ,M do
(s′ , r)← G(s, a)
Û j ← r
s ← s′

for all t = 1, . . . , T − 1 do
(s′ , r)← G(s, πr(s))
Û j ← Û j + γ t r
s ← s′

end for
end for
return Û ← 1

M ∑
M
j=1 Û j

▸ Classification-based reinforcement learning with rollouts.38 38 Lagoudakis and Parr (2003)

Rollout-based reinforcement learning algorithms proceed in iterations, produc-
ing a series of classi�cation training sets

D1 ,D2 , . . . ,Dk ,

which are used to learn policies

π1 , π2 , . . . πk ,

respectively. In the most basic form of the algorithm, the rollout policy used
to create the training data setDt is the policy learned in the previous iteration,
πt−1.39 39 �e �rst D1 is constructed using an initial

given policy π0 , which usually is given by the
uniformly random policy.

�emain idea is that the decisionmadewith the help of the rollout procedure
should be, on average, slightly better than the decision that would be made by
the current policy without the help of any forward simulation.40 �e new pol- 40 �is is apparent at the beginning of learn-

ing, where the random policy would select a
random action, whereas the rollout-based de-
cision is informed by the rewards observed
during the rollouts.

icy, learned on these slightly improved decisions, is then expected to be slightly
better than the previous policy.�is new policy is then used as the new rollout
policy to create an even better classi�cation data set, which in turn yields an
even better policy, and so on. Pseudo code for a general form of classi�cation-
based reinforcement learning with rollouts is provided in Algorithm 4.

background & related literature 43

Algorithm4Classi�cation-based reinforcement learningwith rollouts (general
form).
Output:
π(s) ∶ S → A // policy that returns an action a ∈ A for given state s ∈ S
π ← uniform random policy
for k = 0, 1, 2, . . . do
create classi�cation data setD using rollouts with rollout policy π
π ← train classi�er onD

end for

2.4 related work

�e infeasibility of perfectly optimal behavior in non-trivial problems due to
resource constraints faced by the decision maker is widely acknowledged in the
arti�cial intelligence literature in general,41 and in sequential decision making 41 For example, Russell andNorvig (2010, Sec-

tions 1.1 and 27.3).problems in particular.42 In this section, I discuss existing ideas that account for
42 Sutton and Barto (2018, Part II)limited resources in arti�cial intelligence research. Each upcoming chapter of

this dissertation has its own section discussing the literature related speci�cally
to the contents of that chapter.43 43 �e chapter-speci�c related-literature sec-

tions are §3.3, §4.3, §5.5, and §6.9.

▸ Optimization under constraints & meta-reasoning. One attempt
to account for limited resources is to directly incorporate resource constraints
into the utility-maximization problem. Utility-maximization under constraints
has been studied in economics,44 psychology,45 and in arti�cial intelligence re- 44 Sargent (1993) and Stigler (1961)

45 Anderson and Milson (1989), see also the
discussion in Gigerenzer et al. (1999, p.10)

search.46 One problem with this approach is that the constrained optimization

46 Russell andWefald (1991) and Gershman et
al. (2015)

problem is usually not actually simpler to solve than the original, unconstrained
optimization problem.47 In other words, the constrained optimization problem

47 Usually the constrained optimization prob-
lem is transformed into an unconstrained op-
timization problem using the method of La-
grange multipliers or its generalization, the
Karush-Kuhn-Tucker conditions (Kuhn and
Tucker, 2014).

requires even more computational resources than the original problem.�ere-
fore, while constrained optimization can sometimes accurately model the out-
comes of decisionsmade under limited resources, it is o�en not a goodmodel of
the decision process itself, and therefore of limited value for creating arti�cial
decision makers.
Utility-maximizationunder constraints is a formof optimalmeta-reasoning48 48 Zilberstein (2008) and Russell and Wefald

(1991)because the agent actively deliberates on a meta-level, trying to �nd the op-
timal cost-bene�t trade-o�. Several authors49 have noted that optimal meta- 49 Elster (1977), Russell and Wefald (1991),

Gigerenzer et al. (1999), and Ortega et al.
(2015)

reasoning leads to a problem of in�nite regress, brie�y described next. �e
meta-reasoning e�ort itself is a costly process. �us, the agent should also bal-
ance the bene�ts and costs of this meta-level e�ort in a meta-meta-reasoning
e�ort to arrive at a truly optimal solution. However, this meta-meta-reasoning
e�ort is itself costly and thus demands for yet another level of reasoning, and
so on.

Information-theoretic bounded rationality50 also formulates bounded ratio- 50 Braun et al. (2011), Ortega (2011), Genewein
et al. (2015), and Grau-Moya (2016). A review
is provided in Ortega et al. (2015).

nality as a constrained utility-maximization problem, where any resource con-

44

straints are formulated as information-processing costs. An optimal solution to
this problem can be formulated as a simple rejection sampling mechanism that
resembles the ξ-satis�cing policy presented inChapter 6 of this dissertation (see
Section 6.9 for a more detailed discussion about this relationship).

▸ Bounded optimality.51 Russell and Norvig (2010, p. 1050) write that a 51 Horvitz (1987), Etzioni (1989), Russell and
Wefald (1991), and Russell and Subramanian
(1994)

“bounded optimal agent behaves as well as possible, given its computational re-
sources.” Bounded optimality is related to optimization under constraints and
meta-reasoning,52 but it shi�s the focus from the agent itself to the designer 52 Zilberstein (2008)

of the agent architecture. �e designer is tasked to construct an “optimal pro-
gram”, which the agent then executes to exhibit boundedly optimal behaviors.
�e authors admit, however, that it is di�cult to construct such optimal pro-
grams for anything but “very simple machines and somewhat restricted kinds
of environments” (Russell and Norvig, 2010, p. 1050).

▸ Anytime algorithms. Dean and Boddy (1988, p. 49) de�ne anytime algo-
rithms as algorithms that “can be interrupted at any point during computation
and return a result” and the “answers returned improve in some well-behaved
manner as a function of time” (p. 52). Anytime algorithms are useful because
they allow good behavior even if the decision-maker’s deliberation process is
stopped early.53 �e concept of an anytime algorithm, however, is not a for- 53 Zilberstein (1995)

mal approach of how to get to a good decision outcome for any given decision
problem with limited resources. “Anytime” can instead be seen as a desirable
property of an algorithm.

At the risk of oversimpli�cation, we can characterize the approaches presented
so far as “top-down” approaches: �e starting point is a constrained optimiza-
tion problem, which is solved to derive a decision-making strategy. If the con-
strained optimization procedure is successful, this leads to some form of opti-
mal behavior. However, it is generally not clear whether the optimization pro-
cedure itself is successful or feasible at all.
In this dissertation I more o�en than not follow a “bottom-up” approach: I

start from a simple model of bounded rationality or a decision heuristic (which
is usually inspired by human or animal decision-making) and study how this
model can be used to improve the resource e�ciency of existingmachine learn-
ing algorithms.54 54 See Katsikopoulos (2014) for a related dis-

cussion about the distinction between “ideal-
istic” and “pragmatic” cultures of bounded ra-
tionality in economics and psychology.▸ Ecological rationality. In that regard my approach is related to the

“bottom-up” approach known as ecological rationality.55 �is notion is inspired 55 Gigerenzer et al. (1999), Gigerenzer and Sel-
ten (2002), Katsikopoulos (2011, 2014), Todd
et al. (2012), Todd and Brighton (2016), and
Brighton (2020)

by Herbert Simon’s idea that the rationality and performance of a decision-
making strategy largely depends on the match between the strategy’s structure
and the structure of the decision environment.56 Put di�erently, a very simple, 56 Simon (1956)

boundedly rational decision heuristic can routinely make good inferences if it
can exploit reliable structures in real-world decision environments. Moreover,

a collection of simple heuristics can become a powerful decision-making sys-
tem if the decision maker knows which heuristic to use in which situation.�is
idea is related to the notion of the adaptive toolbox,57 ametaphorical view of the 57 For example, Gigerenzer and Selten (2002).

mind as a collection of heuristics and building blocks that allow humans and
animals to search for information and make decisions under limited resources.

�emain questions addressed in the ecological rationality literature are: Which
tools work well in a given environment, and why?58 Which environmental 58 Todd et al. (2012), Martignon and Hof-

frage (2002), Katsikopoulos and Martignon
(2006), Baucells et al. (2008), Gigerenzer and
Brighton (2009), and Katsikopoulos et al.
(2018)

structures are prevalent in real-world decision environments?59 How can an

59 Şimşek (2013) and Şimşek et al. (2016)

agent learn to identifymatch between strategy and environment and thus choose
the right tool at the right time?60

60 Rieskamp and Otto (2006)
Note that following a bottom-up approach does not preclude us from also

asking the question whether a certain simple decision heuristic occurs as the
solution to some optimization problem. On the contrary, such results help the
cause of ecological rationality because the nature of the optimization problem
can provide information about the environmental structures in which the cor-
responding (optimal) heuristic performs well.

Part II

BOUNDEDLY RAT IONAL FUNCT ION APPROX IMAT ION

3
THE PRED ICT IVE POWER OF S IMPLE REGRES S ION
MODELS

�is chapter is based on Jan M. Lichtenberg and Özgür Şimşek (2017). “Simple
regression models”. In: Imperfect Decision Makers: Admitting Real-World Ratio-
nality. PMLR 58, pp. 13–25.

In this chapter I study the predictive accuracy ofmodels of bounded rational-
ity in supervised learning, and more speci�cally, in the regression task. Simple
regression models have a long history in the psychology literature, where they
have been compared to human judgements and classical statistical models such
as ordinary least squares. However, there is a lack of a comprehensive empirical
comparison of these models with state-of-the-art regression models from the
supervised learning literature.
I report the results of such an empirical analysis on 60 real-world data sets.

Simple regression models such as equal-weights regression routinely outper-
formed their state-of-the-art peers, especially on small training sets. However,
averaged across all data sets, simple models showed lower predictive accuracy
than their more complex counterparts in situations where plenty of data was
available.

�e main contribution of this chapter in the context of this dissertation is
conceptual. �e results suggest to use the amount of data available to a rein-
forcement learning agent as a main determinant in deciding when to use mod-
els of bounded rationality as function approximation architectures. Speci�cally,
when only little or low-quality data is available, simple models of boundedly
rationality seem to provide a promising alternative to more complex models as
function approximators. Conversely, a simple function approximator is unlikely
to rival a more complex function approximator when a lot of data is available.
Making the sensible assumption that the amount and quality of data available to
a reinforcement learning agent generally increases over time, the results suggest
the use of an adaptive function approximation architecture that starts simple
and becomes more complex over time.
A secondary contribution of the present study is that it complements the

growing literature on comparing the predictive performance of boundedly ra-
tional prediction models to more complex statistical models,1 building towards 1 See Katsikopoulos et al. (2018) for a recent

synthesis of existing work.a more general theory of when and why simple models perform well.
A further contribution of this chapter is based on the following observation

50

from the empirical analysis. �ere was no simple model that predicted well in
all data sets; but in almost all data sets, there was at least one simple model that
predicted well (across the entire learning curve, that is, even for large training
set sizes).�is opens up an interesting research direction for future work, which
could examine models that adaptively choose between a few simple—but max-
imally di�erent—simple models, as discussed in more detail in Section 3.5.2 2 See also Şimşek and Buckmann (2017).

In Section 3.1 I list existing simple regression models, de�ne new ones, and
describe how to estimate their parameters (Section 3.2). Section 3.3 de�nes three
desiderata of a comprehensive empirical study to assess the predictive perfor-
mance of simple regressionmodels and reviews the existing literature on simple
regressionmodels, concluding that none of the existing workmeets the desider-
ata de�ned. In Section 3.4 I report the results of a comprehensive empirical
study that compares simple models to state-of-the-art regression algorithms on
60 data sets. Finally, Section 3.5 discusses the results.

3.1 simple regression models

Recall from Section 2.1 that a regression model f is a model that predicts a real-
valued output ŷ given some p-dimensional input vector x, that is,

ŷ = f (x , β).
�e simple models we consider are special instances of the standard linear re-
gression model3 3 Setting β j = γα j , we obtain the classical for-

mulation of the linear regression model: ŷ =

β0 +∑p
j=1 x j β j .ŷ = β0 + γ

p∑
j=1 x jα j , (3.1)

and share the following properties: (a) parameters α j are chosen heuristically
(for example, equal weights), and (b) parameters α j can be estimated or de-
termined independently of the location parameter β0 and the scale parameter
γ. Intuitively, the weighted sum determines the nature of how the predictors
are combined or selected. �e two parameters β0 and γ then determine the
location and scale of this weighted sum, respectively. Di�erent simple models
correspond to di�erent ways of determining α j . Estimation of β0 and γ is the
same for all simple models considered and will be explained in the following
section.
Given some training data (y i , xi), i = 1, . . . , n, we assume that predictors

and the response variable are centered, that is,

ȳ = 1
n

n∑
i=1 y i = 0 and x̄ j = 1n

n∑
i=1 x i j = 0 for all j = 1, . . . , p,

and scaled, that is,

sy = 1n
n∑

i=1 y2i = 1 and sx j = 1n
n∑

i=1 x2i j = 1 for all j = 1, . . . , p.

the predictive power of simple regression models 51

A centered and scaled variable will be called standardized. Scaling the response
variable y does not a�ect the relativemodel performance but simpli�es the anal-
ysis across di�erent data sets. Furthermore, predictors are said to be directed if
they correlate non-negatively with the response.4 Wewill now de�ne the simple 4 See also Section 2.2.1 for a discussion of fea-

ture directions.models considered in the upcoming empirical analysis.

▸ Mean prediction. �is is the simplest available model and always predicts
themean value of the response calculated on the training data.�e correspond-
ing model can be written as

ŷ = β0 .

Mean prediction is appropriate when no predictive predictor is available. We
normally do not consider data sets that do not contain predictive predictors.
�erefore, mean prediction does not play a role in supervised learning in gen-
eral. In this chapter the mean prediction model serves as a baseline model.

▸ Random weights. �is is perhaps the most “improper” model5 one could 5 Dawes (1979, p.1) de�ned improper models
as models “in which the weights of the pre-
dictor variables are obtained by some nonop-
timal method; for example, they may be ob-
tained on the basis of intuition, derived from
simulating a clinical judge’s predictions, or set
to be equal.”

imagine. Once standardized and directed, each predictor is assigned a random
weight stemming from a uniform distribution, that is,

ŷ = β0 + γ
p∑

j=1 ω jx j ,

where ω j ∼ U(a, b). Di�erent authors used di�erent values for a and b. We
used a = 0 and b = 1. More than 80 years ago, Wilks (1938) showed that the
correlation of predictions of two independent random weights models tends to
1 with an increasing number of positively inter-correlated variables. Random
weights should be outperformed by equal weights due to smaller variance of
the latter.6 We still shall include random weights as a benchmark model in our 6 Dawes (1979)

empirical analysis.

▸ Equal weights. �e equal weights (EW) regression model7 takes all stan- 7 See Section 2.2.3 for a discussion of di�erent
equal-weighting strategies.dardized and directed features into account and weights them equally, that is,

ŷ = β0 + γ
p∑

j=1 x j . (3.2)

Using the assumption that all predictors are directed, equal weights has only
two free parameters (location and scale) le�.

▸ Correlation weights.�ismodelweights all predictors by their uni-variate
correlation with the response, that is,

ŷ = β0 + γ
p∑

j=1 ryx j x j ,

where ryx j is the sample Pearson correlation coe�cient between the response y
and predictor x j . Correlation weights has to estimate p + 2 parameters. How-
ever, these coe�cients are still easier to calculate than ordinary least squares

52

weights both in terms of computational complexity and numerical stability is-
sues. Whereas OLS su�ers, for example, from the multicollinearity problem,
the correlation coe�cients are calculated independently of each other and in-
dependently of β0 and γ.

▸ Ranked correlation weights. �is model does not need the exact values
of the correlation weights but only their ranks, that is, their relative order. �e
corresponding model can be written as

ŷ = β0 + γ
p∑

j=1 ρ j x j , where ρ j = rank(ryx j).
�e lowest correlated cue has rank 1 and the highest correlated cue has rank
p. Ties are assigned the average rank.8 �e ranked correlation weights model 8 For example, the vector (7, 4, 4, 2) has ranks

(4, 2.5, 2.5, 1).might be easier to estimate and thus more robust than correlation weights9 or
9 Our implementation of ranked correlation
weights actually �rst estimates all correlations
and then assigns ranks. However, there may
be simpler ways to (approximately) determine
the ranking of correlations.

OLS but still allows for di�erential weighting of multiple predictors as opposed
to equal-weighting or single-cue strategies.

▸ Single-cue regression. �is model considers only the predictor that has
the highest uni-variate correlation with the response among all available pre-
dictors.�e corresponding model can be written as

ŷ = β0 + γx1 ,

where x1 is the cue that is most correlated with the criterion y. In order to
determine the single-cue, we estimate the correlations between all predictors
and the response and choose the one with the highest absolute value.10 10 Estimation of single-cue regression is not

less complex than estimation of correlation
weights as we have to calculate all p predictor-
response correlations in order to determine
the single-cue. However, there may be sim-
pler ways to (approximately) determine the
single-cue. In addition, single-cue regression
is “simpler” at decision time, where it requires
only the information of one predictor.

3.2 parameter estimation from training data

Unless speci�cally stated otherwise, we assume that location parameter β0 and
the scale parameter γ are calculated using simple linear regression (SLR).11 �e

11 SLR is sometimes also called uni-variate re-
gression.

parameters α j are set or estimated depending on the respective algorithm and
always before the estimation of β0 and γ.
SLR is much easier to estimate than OLS in general as it does not involve the

inversion of matrices but only simple estimates of scale and co-variation. Let
c(x i) = ∑p

j=1 x jα j denote the weighted sum of predictors for observation i and
let c = (c(x1), . . . , c(xn))T denote the vector of weighted sums for observations
1 to n.�en, the SLR estimates for the univariate regressionmodel (3.1) are given
by

γ = ryc
sy

sc
and β0 = ȳ − γc̄,

where ryc is the sample correlation coe�cient between y and c, and sy and sc

are the standard deviations of y and c, respectively.
Note that β0 can be omitted (set to 0) for all models when predictors and

responses are standardized. Some authors do not include the scale parameter

the predictive power of simple regression models 53

γ when the loss function is invariant under scaling. In this chapter we are in-
terested in regression under squared error loss, which is sensitive to scaling.
Inclusion of γ is therefore crucial.

3.3 desiderata for an empirical analysis of
simple regression models & literature review

Ideally, an empirical study assessing the predictive performance of simple re-
gression models would have the following qualities:

1. It compares simple models with state-of-the-art regression algorithms from
the supervised learning literature,

2. on a large variety of data sets fromdi�erent domains (rather than just a single
data set or just simulated data),

3. using a regression-adequate evaluation metric in a prediction context (as
opposed to a data-�tting context).

Table 3.1 shows all studies reviewed in the next section and previous compara-
tive studies, in chronological order. �e table shows that none of the empirical
studies meet all three requirements listed above. Speci�cally, studies that use a
regression-adequate evaluation function in a prediction context (highlighted in
green color) either do not use real-world data or just use a single data set (for
example, US election data in Cuzan and Bundrick (2009) and Graefe (2015)).
In the remainder of this sectionwe review the existing literature about simple

regression models on a model-by-model basis.

▸ Equal weights. �e EW model has a long history of use in the social sci-
ences. It appeared in a seminal paper byDawes andCorrigan (1974) that showed
that even so-called impropermodels (such as EW) could outperformhuman ex-
pert judgements.�e article also demonstrated that EW can compete well with
OLS on real-world data sets, stimulating further work on equal-weightingmod-
els in the 1970s, continuing to this day.12 Equal-weightingmodels have also been 12 Einhorn andHogarth (1975),Wainer (1976),

Davis-Stober et al. (2010), and Graefe (2015)found to be useful in other types of problems, including paired comparison13
13 Gigerenzer et al. (1999)and portfolio optimization.14 14 DeMiguel et al. (2009b)

Equal weights has been discussed analytically in regression: Einhorn and
Hogarth (1975) compare expected mean squared errors of EW and OLS with
each other, providing intuition on how n and p in�uence the relative perfor-
mance di�erence between the two algorithms. �eir theorem depends on the
knowledge of the true error distribution, though, and is thus of little practical
value.
Wainer (1976) states that ”it makes no nevermind” whether one uses equal

weights or OLS as the loss in variance explained is small under some general
conditions on the true coe�cients.15 However, the proportion of variance ex- 15 See also Laughlin (1978) andWainer (1978).

plained on the training data is a bad proxy for assessing the prediction perfor-
mance of a model on unseen data. Davis-Stober et al. (2010) provide analytical

54

Paper Model(s) Research style Performance
metric

Wilks (1938) RW �eoretical Correlation
Wesman and
Bennett (1959) UW Empirical, College Grades Correlation

Schmidt (1971) UW MC-Simulation; Gaussian
Data Correlation

Dawes and
Corrigan (1974) EW, RW

�eoretical and Empirical
(Social sciences /
Psychology)

Correlation

Einhorn and
Hogarth (1975) UW, EW �eoretical

Correlation &
MSEEW

MSEOLS

Wainer (1976) EW �eoretical R2

Laughlin (1978) EW �eoretical R2

Wainer (1978) EW �eoretical R2
Dawes (1979) Follow up to Dawes and Corrigan (1974), similar results.
Ehrenberg (1982) OLS �eoretical R2
Barron and
Barrett (1996) RCW Synthetic Data Accuracy

Hertwig et al.
(1999) QuickEst �eoretical; City data set MAE &

Frugality
Dana and Dawes
(2004)

CW, EW,
SC

5 real data sets and syn.
data validated R

Bobko et al.
(2007) EW Empirical Correlation

Helversen and
Rieskamp (2008)

Mapping
Model,
QuickEst

Simulation and human
experiments MSE

Cuzan and
Bundrick (2009) EW US election data MAE

Waller and Jones
(2009) CW, OLS �eoretical

cos(βOLS , βCW)

& drop in R2

Davis-Stober
et al. (2010)

EW, SC,
UW

�eoretical and simulated
data MSEβ = E∥β̂ − β∥

Davis-Stober
(2011) Similar setup as in Davis-Stober et al. (2010)

Woike et al.
(2012)

QuickEst,
Zig-
QuickEst

Empirical on 99 data sets
with dichotomized cues. normalized MSE

Graefe (2015) EW, UW US Election data MAE

Table 3.1: Summary of papers that investigate
simple regression models. Performance met-
rics that are highlighted with bl are not ap-
propriate for the regression problem. Perfor-
mance metrics that are highlighted with bl
are used in regression, but are not appropriate
for the prediction problem investigated here
(these metrics measure how well the model
�ts the training data). Performance metrics
that are highlighted with bl are appropriate
for assessing the performance of regression
models in a prediction context.

the predictive power of simple regression models 55

bounds on the expected mean squared error of the equal weights parameter
vector, given byMSEβ = E∥βEW − βtrue∥.

▸ Correlation weights. Waller and Jones (2009) compare the correlation
weights model to the OLS model.�ey derive conditions under which the cor-
relation weight ryx i and the regression weight βOLS

i of a feature x i are equal
or maximally similar. �ey also describe the loss in R2 (the coe�cient of de-
termination) when switching from OLS to correlation weights. However, their
analysis remains in a data �tting context. Dana and Dawes (2004) �nd that
Correlation Weights is equal or outperforms OLS in 4 out of 5 data sets across
di�erent training set sizes. However, their analysis is not based on prediction er-
ror, but on ”validated R2”. Several other studies compared Correlation Weights
to (mostly) OLS on synthetic data sets16 or one single data set.17 16 Claudy (1972)

17 Goldberg (1972)

▸ Ranked correlation weights. A model similar to the ranked correla-
tion weights model is compared to true weights and equal-weighting models
in the context ofmultiattribute decision making18 in Barron and Barrett (1996). 18 Find the alternative with the highest re-

sponse value among a set of n ≥ 2 alternatives.We do not know of any study that compares the prediction accuracy of ranked
correlation weights models to other regression models in a regression context.

▸ Single-cue regression. Dana and Dawes (2004) �nd that single-cue re-
gression19 is inferior to OLS on 5 data sets overall, only outperforming the latter 19 Called ”Take the Best Weights” in their pa-

per.for the smallest examined training set size on 2 of the 5 data sets.
Single-predictormodels as well as related lexicographicmodels (use one pre-

dictor at a time, see also Section 2.2.2) have been studied in machine learning20 20 Holte (1993) and Şimşek and Buckmann
(2015)and psychology21. However, all of these studies are concerned not with the re-
21 Tversky and Kahneman (1973), Gigerenzer
et al. (1999), and Hogarth and Karelaia (2005)gression problem but with classi�cation or paired comparison problems.

3.4 empirical analysis

Herewe report the results of a large-scale empirical analysis of simple regression
models.

▸ Data sets. We used 60 publicly-available data sets from varying domains.
Sources included online data repositories, statistics and data mining competi-
tions, packages for R statistical so�ware, textbooks, and research publications.
�e number of observations ranged from 31 to 39644, the number of predic-
tors from 3 to 52. Table 3.2 shows the number of observations and the number
of predictors in each data set. Detailed information about the data sets can be
found in Appendix C.
For each data set, the response has been standardized and all predictors have

been standardized and directed. Missing predictor values have been mean-
imputed and observations with missing response values have been removed

56

Id Name Obs. Predictors

1 Abalone 4177 8
2 A� 41 5
3 Air 41 6
4 Airfoil 1503 5
5 Algae 340 11
6 Athlete 202 8
7 Basketball 96 4
8 Birthweight 189 8
9 Bodyfat 252 13
10 Bone 42 6
11 Car 93 21
12 Cigarette 528 7
13 Concrete 1030 8
14 Contraception 152 6
15 Cpu 209 6
16 Crime 47 15
17 Diabetes 442 10
18 Diamond 308 4
19 Dropout 63 17
20 Excavator 33 4
21 Fish 413 3
22 Fuel 51 5
23 Gambling 47 4
24 Highway 39 11
25 Hitter 263 19
26 Home 3281 4
27 Homeless 50 7
28 Infant 101 3
29 Laborsupply 5320 5
30 Lake 69 10

Id Name Obs. Predictors

31 Land 67 4
32 Lung 654 4
33 Mammal 58 7
34 Medexp 5574 14
35 Men 34 3
36 Mileage 398 7
37 Mine 44 4
38 Monet 430 4
39 Mortality 60 15
40 Movie 62 12
41 Mussel 44 8
42 News 39644 52
43 Obesity 136 11
44 Occupations 36 3
45 Pinot 38 6
46 Pitcher 176 15
47 Plasma 315 12
48 Prefecture 45 5
49 Prostate 97 8
50 Reactor 32 10
51 Rebellion 32 6
52 Recycle 31 7
53 Rent 2053 10
54 Salary 52 5
55 Sat 50 4
56 Schooling 3010 22
57 Tip 244 6
58 Vote 159 5
59 Wage 4360 10
60 Whitewine 4898 11

Table 3.2: Data sets used in the empirical com-
parison.

from the data set.

▸ Benchmark models. We chose to include three benchmark models, de-
scribed below. Two of them are state-of-the-art regressionmodels. We included
OLS for historic reasons.

1. Ordinary least squares (OLS) minimizes the mean squared error between
predicted and true values on the training data.

2. Elastic net regression22 is a state-of-the-art regularized linear regressionmodel. 22 Zou and Hastie (2005)

Regularized linear models originally have been developed to overcome the
estimation di�culties of OLS.23 �ey attempt to optimize prediction accu- 23 Hoerl and Kennard (1970)

racy by �nding the happymediumbetween simplicity and complexity. Regu-
larized linearmodels are explained anddiscussed in detail in the next chapter
(see, in particular, Section 4.1). We also tested ridge regression and the Lasso
in our empirical study and found their results to be very similar to those of
the elastic net and thus omit these two models from our analysis for brevity.

3. Random forest regression24 is a non-parametric and non-linear regression 24 Breiman (2001)

model. �e random forest regression model is an ensemble of regression

the predictive power of simple regression models 57

trees, whose individual predictions are combined (usually averaged) to pro-
duce a single prediction output.�e model’s classi�cation-equivalent (o�en
simply called random forests or randomdecision forests) was among the best
models in a large-scale comparison of 179 general-purpose classi�cation al-
gorithms across 121 data sets.25 It also has been shown to perform remarkably 25 Fernández-Delgado et al. (2014)

well on tiny training data sets.26 26 Buckmann and Şimşek (2017)

Implementation details for each of the benchmark models are provided in Ap-
pendix A.

▸ Results. We show three sets of results. Figure 3.1 shows the mean RMSE of
each algorithm across 60 data sets, computed using 10-fold cross validation.
�ese estimates of the prediction error correspond to large training set sizes
relative to the total size of the data set (90% of available observations).

0.7530.749
0.705

0.789

0.994

0.7180.71

0.8130.783

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
la

st
ic

ne
t

R
an

do
m

fo
re

st

O
LS

C
or

re
la

tio
n

w
ei

gh
ts

C
or

re
la

tio
n

ra
nk

s

S
in

gl
e

cu
e

E
qu

al
w

ei
gh

ts

R
an

do
m

w
ei

gh
ts

M
ea

n
pr

ed
ic

tio
n

M
ea

n
R

M
S

E

Benchmark models
Simple models

Figure 3.1: 100 x 10-fold cross validation-
based rootmean squared error (RMSE) across
60 data sets.

Figure 3.2 shows learning curves averaged across 60 data sets as the training
set varied in size from 4 to 100.�e �gure shows learning curves for all models
except mean prediction, random weights, and OLS.27 �e test set consisted of 27 OLS over�ts for small ratios of n/p.�e re-

sulting average RMSEswere outside of the �g-
ure boundaries due to some data sets with a
large number of predictors p.

10% of the total number of observations in the data set and did not overlap
with the corresponding training set. �e estimation procedure was repeated
100 times for each training set size and algorithm. �e learning curves are not
monotonically decreasing towards the end because only a subset of the data sets
are large enough for higher training-set sizes.�e number of data sets available
for a given training set size is indicated at the top of the �gure.
Finally, we present learning curves of various algorithms in individual data

sets. Figure 3.3 shows learning curves in data sets diabetes, prostate, and sat.
Figures B.1 to B.3 in the Appendix present individual learning curves for all
remaining data sets.
We �rst compare simple regression models to benchmark models collec-

tively, then comment on results within the groups of simple models and bench-

58

60 60 60 60 60 60 60 60 57 53 49 40 30
Number of data sets

0.8

0.9

1.0

1.1

4 6 8 10 12 15 20 25 30 35 40 50 100
Training−set size (log scale)

M
ea

n
R

M
S

E

Elastic
net
Random
forest
Equal
weights
Single
cue
Correlation
weights
Correlation
ranks

Figure 3.2: Learning curves averaged across
60 data sets.

mark models, respectively.
Averaged across 60 data sets, simple models were collectively outperformed

by all benchmark models for larger training set sizes.28 However, equal weights 28 �e end of the learning curve shows the
average across all 30 data sets that are large
enough for training set sizes of 100.�e cross
validation-based analysis of Figure 3.1 shows
the average across all 60 data sets for train-
ing set sizes ranging from 27 to 35679 obser-
vations, corresponding to 90% of the total size
of the respective data sets. Both analyses show
qualitatively similar results.

and ranked-correlation weights outperformed all competing models for train-
ing set sizes below 15 on the mean learning curve. In addition, the learning
curves in individual data sets show that, for many data sets, there is at least
one simple model that performed well across large parts of the learning curve.
Let the minimum error curve be de�ned as the algorithm with minimum error
among all algorithms as a function of training set size.�en, in 22 out of 60 data
sets, simple models occupied the entire minimum error curve except for possi-
bly one training-set size. In another 21 data sets, simplemodels occupied at least
half of the minimum error curve. �e 17 remaining data sets were dominated
by benchmark models.
Onmany data sets we observed that some simplemodels performed remark-

ably well while other simple models performed quite poorly (as opposed to a
situation in which all simple models performing approximately equally well or
equally poorly). A good example is the sat data set shown in Figure 3.3, which
is one of the few data sets for which both equal weights and ranked correla-
tion weights perform poorly, but for which single-cue is the best-performing
algorithm across the entire learning curve. Conversely, on the diabetes data set,
single-cue performs considerably worse than most other models while correla-
tion weights performs best until a training set size of 30.

�e data sets prostate and diabetes have been used to illustrate the favor-
able prediction performance of the elastic net and other sophisticated regression

the predictive power of simple regression models 59

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

● ● ●

Diabetes Prostate SAT

4 6 810 20 30 50 100 4 6 8 10 20 30 50 4 6 8 10 20 30

0.5

0.6

0.7

0.8

0.9

0.7

0.8

0.9

1.0

1.1

0.8

0.9

1.0

1.1

1.2

Training−set size (log scale)

M
ea

n
R

M
S

E
● OLS

Elastic
net
Random
forest
Equal
weights
Single
cue
Correlation
weights
Correlation
ranks

Figure 3.3: Individual learning curves for data
sets diabetes, prostate and sat.

models in the past.29 Figure 3.3 shows that correlation weights outperformed 29 Tibshirani (1996), Efron et al. (2004), and
Zou and Hastie (2005)the elastic net in both data sets in training set sizes smaller than 30.

On the mean learning curve, ranked-correlation weights outperformed all
other simple models across the entire curve. However, on individual data sets,
ranked-correlation weights was o�en outperformed by one ormore of the other
simple models. In fact, in almost all data sets, the learning curve of ranked-
correlationweights lies in between those of equalweights and correlationweights,
independent of which of the two latter models performed better. �is con-
�rms the intuition that ranked correlationweights is an intermediately-complex
model that is able to perform well in situations of scarce information (similar
to equal weights) but can also exploit the bene�ts of weighting predictors dif-
ferently when there is enough information to reliably estimate the ranking of
predictors.
Both equal weights and single-cue regression share the property of perform-

ing either very well or very poorly onmany data sets. Single-cue regression was
the second-worst or worst model over the entire range of training set sizes in
23 of the 60 data sets. However, it was also the best-performing model across
the entire learning curve in sat and across large parts of the learning curve in
bodyfat. Equal weights outperformed all other models across the entire learn-
ing curve in data sets bone, fuel, pinot, reactor, rent, and wage. But it was by far
the worst model on large parts of the learning curve in diamond, excavator, �sh
and sat.
Among benchmark models, OLS was outperformed by random forest re-

gression and the elastic net, both on average and individually on most of the
data sets. Elastic net more o�en than not outperformed random forest regres-
sion, especially on small training sets.

3.5 discussion

�e empirical analysis presented in this chapter shows that simple regression
models, for example, equal-weights regression, routinely outperform not only

60

multiple linear regression but also state-of-the-art regressionmodels, especially
on small training sets.
We found that none of the simple models we examined predicted well in all

data sets. But, in almost all data sets, there was at least one simple model that
predicted well.
Because OLS has severe estimation di�culties with small training sets, it

would be reasonable to expect simple regression models to perform better than
OLS on small training sets.�is was also observed previously in the literature.30 30 For example, in Dana and Dawes (2004)

and Davis-Stober et al. (2010).However, we did not expect the simple models to be able to compete with state-
of-the-art regularized linear models such as elastic-net regression or random
forest regression.
Sparsity-inducing regularized linear models attempt to optimize prediction

accuracy by searching through a possibly in�nite-dimensional hypothesis space
of linear models, ranging from a sparse linear model to the full, complex OLS
solution. All simple models considered here are also special cases of the lin-
ear regression model. And yet—even though we tested only four such simple
models—these models could sometimes outperform the carefully-optimized
elastic net.

�ese results indicate that it may be possible to substantially reduce the size
of the hypothesis space of linear models and to make good inferences nonethe-
less. In other words, it is possible tomake good inferences based on a few simple
models if only one knows which simple model to choose.
Future work could examine models that adaptively choose between a few

but maximally di�erent simple models. For example, a model that chooses be-
tween single-cue, equal weights, and ranked correlation weights, based only on
information in the training data, could be a fast and robust alternative to cur-
rent state-of-the-art models, while being computationally less challenging.�e
main question will be whether this algorithm can choose the most appropriate
simple model based on only a small number of training examples.
An important research direction is to examinewhether people can intuitively

pick the right simple model for a given problem. Such a �nding may explain
how people o�en make good decisions despite their bounded cognitive capac-
ities.

4
BOUNDED RAT IONAL IT Y AS REGULAR IZAT ION :
SHR INKAGE TOWARD EQUAL WE IGHTS

�is chapter is based on Jan M. Lichtenberg and Özgür Şimşek (2019b). “Regu-
larization in directable environments with application to Tetris”. In: Proceedings
of the 36th International Conference on Machine Learning, pp. 3953–3962.

�e previous chapter showed that models of bounded rationality such as
equal-weights regression encode useful prior knowledge and therefore can pro-
vide a computationally less expensive alternative to more complex machine
learningmodels, especially in situations where only limited amounts of training
data are available.�e results also showed that, on average, these simplemodels
cannot reach the performance of the more complex models when training data
is abundant.
Herewe are interested in creating amodel that can get the best of bothworlds

by adapting to the amount of data available. Regularized linear models are a
good candidate for doing exactly that: depending on the choice of a parameter,
called regularization strength, these linear models interpolate between a purely
data-driven approach and an approach that relies on the prior knowledge en-
coded in the regularization term.
One could expect that such an adaptively regularized linearmodel should al-

ways perform at least as well as a rigid simple linear model, because the former
could simply emulate the latter in a situation of limited available data. Interest-
ingly, the results in the previous chapter showed that simple models routinely
outperformed elastic-net regression, a popular general-purpose regularized lin-
ear model.1 One possible explanation is that the simple models investigated en- 1 Similar �ndings were reported for the paired

comparison tasks in Buckmann and Şimşek
(2017).

code some relevant prior knowledge that is not covered by elastic-net regular-
ization.2 �is leads to the question: Can we inform statistical machine learning 2 A di�erent, complementary explanation is

that the regularization strength cannot always
be tuned appropriately using only informa-
tion in the training data.

models with the prior knowledge encoded in existing models of bounded rational-
ity?
In this chapter, I propose a new regularization term for linear models called

shrinkage toward equal weights, or STEW.With increasing regularization strength,
STEW regularization shrinks the weights of a linear model toward each other,
resulting in an equal-weighting solution in the limit of in�nite regularization.
We study the STEW regularization term in the regression task. In particular,
we study properties of the equal-weights regression model as a source of intu-
ition regardingwhen, andwhy, STEWcan performwell. We provide theoretical

62

and empirical evidence that the equal-weights estimator has relatively low bias
compared to comparable constrained linear models and that this bias is further
reduced when feature directions are known.�e direction of a feature indicates
whether the feature is associated positively or negatively with the response vari-
able. In many applications, feature directions are known or can be estimated
with ease.3 3We brie�y discussed this claim in Section

2.2.1 in the context of single-shot decision
making. Chapter 5 addresses the problem of
learning feature directions in sequential deci-
sion making problems.

Our empirical analysis shows that these properties translate from the equal-
weights model to STEW. When information on directions is available, STEW
routinely outperforms existing regularized models including the non-negative
Lasso, which also incorporates knowledge about feature directions. Unlikemeth-
ods that are based on non-negativity constraints, we found STEW to be robust
when the underlying assumption of known feature directions was violated, that
is, when the information about directions was unreliable or absent.

�is chapter provides three main contributions.
�e �rst contribution of this chapter is conceptual. We show that statistical

machine learning models can bene�t from incorporating prior knowledge en-
coded in models of bounded rationality from the psychology literature. In par-
ticular, STEW regularization can fruitfully incorporate a prevalent and easy-to-
estimate form of domain knowledge—feature directions—in ways that existing
models cannot.

�e second contribution is algorithmic. STEW regularization provides a rel-
atively simple way of smoothly transitioning between a model of bounded ra-
tionality and a fully data-driven model. �is suggests a straightforward way of
building agents that use their bounded cognitive resources adaptively, based on
how much time, computation power, and data are available. We develop this
idea further in the upcoming chapter.
A third contribution is that our theoretical analysis of equal-weightingmod-

els provides insights on why equal-weighting strategies—which are used across
awide variety of academic studies aswell as critical real-life situations4—perform 4 See, for example, Katsikopoulos et al. (2020,

Section 1.1) or Graefe (2015) for work on
equal-weighting strategies in the context of
election forecasts. See also the discussion on
equal-weighting strategies in Section 2.2.3.

so well.
�e chapter is structured as follows. Section 4.1 provides technical back-

ground. Section 4.2 de�nes the STEW regularization term and Section 4.3 dis-
cusses related work. Section 4.4 contains a theoretical bias-variance analysis of
equal-weightingmodels, followedby an empirical analysis of STEW-regularized
regression models in both simulated (Section 4.5.1) and real-world environ-
ments (Section 4.5.2). Section 4.6 concludes with a discussion of the results
presented in this chapter.

4.1 background

We consider the linear regression problem described in Section 2.1.2. �e ob-
jective is to predict a response y ∈ R by

ŷ = β0 + p∑
j=1 β jx j , (4.1)

bounded rationality as regularization: shrinkage toward equal weights 63

where x1 , . . . , xp are feature values and β0 , . . . , βp are feature weights. To es-
timate feature weights, a training set of n observations, (y i , x1i , . . . , xpi), i =
1, . . . , n, is available. Following the standard in the regularization literature,5 5 For example, Friedman et al. (2001).

we assume that features and responses are standardized so that 1
n ∑n

i=1 y i = 0,
1
n ∑n

i=1 x i j = 0, and 1
n ∑n

i=1 x2i j = 1, for j = 1, . . . , p. It follows that β0 is zero and
thus can be omitted. We usematrix notation, with y ∈ Rn denoting the response
vector, X ∈ Rn×p the featurematrix, and β = (β1 , . . . , βp) the weight vector.�e
Ordinary least squares (OLS) estimate is the set of weights that minimizes the
residual sum of squares ∥y − Xβ∥22 on the training set.

▸ Regularized linear models. Most regularized linear models minimize a
penalized residual sum of squares of the form L(β, λ) = ∥y − Xβ∥22 + λP(β),
where P is the penalty function and λ ≥ 0 is the strength of the penalty. Well
known penalty functions use the lq-norm of the weight vector, ∥β∥q . For ex-
ample, ridge regression6 uses the l2 penalty, the Lasso7 uses the l1 penalty, and 6 Hoerl and Kennard (1970)

7 Tibshirani (1996)the elastic net8 uses a convex combination of the l1 and the l2 penalties. �ese
8 Zou and Hastie (2005)models shrink all weights toward zero as λ → ∞. We refer to them as models

that shrink toward zero.

▸ Equal-weighting models. In this chapter the term “equal-weightingmodel”
refers to a linear regressionmodel where all feature weights have the same value,
called the equal-weighting constant and denoted by (γ). �at is, the model is
given by

ŷ = γ
p∑

j=1 x j . (4.2)

We de�ne Equal Weights (EW) as the least-squares estimator of γ and denote
the corresponding estimate with γEW .

▸ Directability of features. Feature directions were introduced in Section
2.2.1. Notice that the EW model as de�ned in Equation 4.2 is a sensible model
only if the features are directed so that the true weights have identical signs. In
this chapter we study the EW model and other models under various assump-
tions about the directability of features in the decision environment.

�e rationale for the use of EW in psychology and decisionmaking is the as-
sumption that people are good in choosing relevant features and know—through
intuition or past experience—how to direct them.9 �e model we propose, 9 Einhorn and Hogarth (1975)

STEW, can also use this knowledge fruitfully.

4.2 shrinkage toward equal weights

Motivated by the surprisingly high performance of equal-weighting models in
the literature—not only in regression but also in classi�cation, paired compar-
ison, and portfolio optimization—we propose to use the equal-weights model
as a prior in regularization. In other words, wemake the initial assumption that

64

features have equal impact on the response variable. �is assumption leads to
the regularization term∑i< j ∣ ∣β i ∣− ∣β j ∣ ∣q , for q > 0, which penalizes di�erences
in the magnitude of the weights. It leaves the choice of feature directions free.
However, the di�erences of absolute values within the penalty function make
the loss function di�cult to optimize. We therefore use a penalty function that
assumes a directable environment.
We de�ne shrinkage toward equal weights, or STEW, as the regularization

term for linear models that penalizes the lq-norm of all pairwise di�erences
between weights. In the context of regression, STEW regularization leads to
the minimization of the loss function below:

LSTEW(β, λ, q) = ∥y − Xβ∥22 + λ∑
i< j

∣β i − β j ∣q , (4.3)

where q > 0 and λ ≥ 0 determine the regularization behavior.
When λ = 0, STEW is equivalent to OLS, just like existing regularized linear

models that shrink weights toward zero. However, with increasing regulariza-
tion strength λ, STEW shrinks weights toward each other rather than toward
zero. In the limit as λ →∞, STEW becomes equivalent to EW, with all weights
converging to γEW . Figure 4.1 illustrates this di�erence in regularization behav-
ior for STEW with q = 1 and q = 2 compared to Lasso and ridge regression on
the Rent data set.

0.0

0.1

0.2

0.3

10−4 10−2 100 102 104

λ (log scale)

W
ei

gh
t e

st
im

at
es

(a) STEW (q = 2)

0.0

0.1

0.2

0.3

10−1 10−0.5 100

λ (log scale)

W
ei

gh
t e

st
im

at
es

β1

β2

β3

β4

β5

β6

β7

(b) STEW (q = 1)

0.0

0.1

0.2

0.3

10−3 10−2 10−1 100 101 102

λ (log scale)

W
ei

gh
t e

st
im

at
es

(c) Ridge regression

0.0

0.1

0.2

0.3

10−3 10−2.5 10−2 10−1.5 10−1 10−0.5

λ (log scale)

W
ei

gh
t e

st
im

at
es

(d) Lasso

Figure 4.1: Weight estimates, as a function of
the regularization strength λ, for STEW with
q = 1 and q = 2, ridge regression, and the
Lasso on the Rent data set with seven stan-
dardized features. �e Rent data set was in-
troduced in Section 2.1.1.

In the remainder of this chapter we refer to the application of STEW reg-
ularization in a linear regression model whenever we talk about STEW or the

bounded rationality as regularization: shrinkage toward equal weights 65

STEWmodel. In Chapter 5, however, we will use the STEW regularization term
to regularize a linear discrete choice model.

▸ Parameter estimation. In matrix notation, Equation 4.3 can be written as
follows:

LSTEW(β, λ, q) = ∥y − Xβ∥22 + λ ∥Dβ∥q
q , (4.4)

where D is a pairwise di�erence matrix with p(p − 1)/2 rows and p columns.
�e rows of D are the unique permutations of the vector (1,−1, 0, . . . , 0) with
p entries such that the entry ‘1’ precedes the entry ‘−1’. For example, if there are
p = 4 predictors the pairwise di�erence matrix is given by

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0−1 0 1 0−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With q = 1, Equation 4.4 has no closed-form solution but can be solved numer-
ically, for example, by using the generalized Lasso framework.10 With q = 2, 10 Tibshirani and Taylor (2011)

minimizing Equation 4.4 is a Tikhonov regularization problem11 and admits 11 Tikhonov et al. (2013)

the closed form solution below:

argmin
β
LSTEW(β, λ, 2) = (XT X + λDT D)−1XT y. (4.5)

We use q = 2 in the remainder of this chapter due to the computational advan-
tages of its closed-form solution.�e matrix D enters the computation only via
the cross-product DT D, which has dimensions p × p and whose elements can
be described as follows:

(DT D)i j = {p − 1, for i = j−1, for i ≠ j.

�is matrix can be calculated once, before conducting the search for the best
value of λ because it depends only on the number of features p.

�e regularization strength λ is treated as a hyper-parameter that is chosen
before the weights β are estimated.

4.3 related work

Here we discuss existing work that is related to STEW in that it is alsomotivated
by knowledge about feature directions, also shrinks some weights toward each
other, or also tries to integrate models of bounded rationality into a statistical
machine learning framework.

66

▸ Non-negativity constraints. Similar to STEW,non-negative least squares
(NNLS) andnon-negative Lasso (NNLasso) bene�t frompositive (or directable)
features. NNLSminimizes the residual sumof squareswhile constrainingweights
to be positive. Although positivity constraints alone were found to have regu-
larizing properties,12 NNLS has been combined with l1-penalty as well.13 �e 12Meinshausen (2013) and Slawski and Hein

(2013)
13 Efron et al. (2004), Slawski and Hein (2013),
and Wu et al. (2014)

resulting model is NNLasso and minimizes the loss function

LNNLasso(β, λ) = ∥y − Xβ∥22 + λ ∥β∥1 , such that β i ≥ 0,∀i = 1, . . . , p.
Figure 4.2 shows regularization paths for the NNLasso model. Note how for
NNLasso all weights are always positive or zero, whereas weights in a STEW-
regularized linear model can be negative for weak regularization strengths. We
compare STEW to NNLasso in the empirical analysis in Section 4.5.

0.0

0.1

0.2

0.3

10−8 10−6 10−4 10−2 100

λ (log scale)

W
ei

gh
t e

st
im

at
es

Figure 4.2: Weight estimates, as a function of
the regularization strength λ, for NNLasso on
the Rent data set with seven standardized fea-
tures. Compare to �gure 4.1.

▸ Total-variation models. Total variation (TV) models14 are motivated by 14 For example, Chambolle (2004).

environments in which features are spatially or temporarily correlated, such as
the pixels of an image or themeasurements of a time series. TVmodels estimate
smooth functions by penalizing the di�erence between the weights of adjacent
features. In a one-dimensional setting, TV models minimize the loss function

LTV(β, λ) = ∥y − Xβ∥22 + λ
p∑

j=2 ∣β j − β j−1∣.
TV models have been developed for and used with data sets where a natural
adjacency relationship exists. TV models are also used in biostatistics when
the data allows a meaningful order of features, for example, in protein mass
spectroscopy. �e fused Lasso15 considers a Lasso-type l1-penalty in addition 15 Tibshirani et al. (2005)

to a TV-type smoothness penalty.
�ere is a surface similarity between STEW and TV models: both models

penalize di�erences between weights. But the exact form of the penalty dif-
fers between the models. TV models penalize the di�erences between adja-
centweightswhile STEWpenalizes all pairwise di�erences between theweights.
�is di�erence is a direct consequence of the di�erent motivations behind the
two models and it results in meaningful di�erences in regularization behavior.
Speci�cally, TV models shrink weights together in patches or clusters that are

bounded rationality as regularization: shrinkage toward equal weights 67

de�ned by the adjacency relationships (sample regularization paths are shown
in Figure B.4 in the Appendix), which is quite di�erent to the behavior of STEW
(Figure 4.1). It should be noted that imposing an arbitrary adjacency relation-
ship onto a dataset (to be used with a TV model) is not well justi�ed: di�erent
adjacency relationships result in arbitrarily di�erent solutions along the regu-
larization path. Figure B.4 in the Appendix also presents a comparison of regu-
larization paths taken by TV models with di�erent orderings of features of the
Rent data set.

▸ Bayesian linear models. Some regularized linear models are equivalent to
certain Bayesian linear models.16 �is leads to the question of whether models 16 For example, ridge regression corre-

sponds to a zero-mean Normal prior on
the weights (Hoerl and Kennard, 1970); the
Lasso corresponds to a zero-mean Laplace
prior (Tibshirani, 1996). �e variance of the
prior is inversely related to the regularization
strength λ in both cases.

of bounded rationality could also be formulated as Bayesian linear models.
Parpart et al. (2018) pursued this question in the context of paired compari-

son. Speci�cally, they formulate simple decision heuristics for the paired com-
parison problem as Bayesian linear models under in�nitely strong priors.�ey
de�ne and analyze two Bayesian linear models, called “half-ridge” and “half-
Lasso”, that correspond to using half-Gaussian and half-Laplacian prior distri-
butions, respectively. �e “half-”pre�x indicates that weights are truncated at
zero, that is, all weights are positive if features are directed.�ey �nd that both
these models converge to the tallying heuristic for a prior-variance approach-
ing 0. �e tallying heuristic is the paired-comparison equivalent of the equal-
weights regression model. Note that this convergence result relies on the fact
that the weights in linear paired comparison models are scale-invariant.17 By 17 �at is, a linear paired comparison model

with feature weights β makes the same pre-
dictions as amodelwith featureweights cβ for
any c > 0.

consequence, the results do not hold in the context of regression, where scale-
invariance does not hold.
Moreover, Parpart et al. (2018) de�ne a Bayesian two-step paired comparison

model called covariance orthogonalizing regularization (COR) that converges to
the tallying heuristic or the take-the-best heuristic, depending on the decision
rule used. Similar to the STEW regularizer de�ned in this chapter, the COR
model allows the interpolation between one of the simple models and a fully-
data-driven solution by varying the prior variance (similar to how we vary reg-
ularization strength). Unlike the regularization term de�ned in this chapter, the
CORmodel is restricted to paired comparison and does not easily generalize to
regression.

4.4 bias-variance analysis of equal-weighting models

Regularized linear models search for a happy medium between OLS, which has
low bias but high variance, and a model that has high bias but low variance.
For both STEW and models that shrink toward zero, the low-variance model
is an equal-weighting model: STEW regularizes toward the EW model (γ =
γEW) while models that shrink toward zero regularize toward what we call the
0-model (γ = 0).

�eorem 1 shows results on the bias-variance decomposition ofmean squared

68

error for equal-weighting models, providing intuition on when and why EW—
and therefore STEW—can perform well.
Mean squared errorMSE(β̂) = E∣∣β̂−β∣∣2 can be decomposed into two com-

ponents, squared bias and the trace of the variance-covariance matrix, Σβ̂ , as
follows:

MSE(β̂) = bias2 + variance = ∣∣E[β̂] − β∣∣2 + tr(Σβ̂).
Let β̂EW and β̂0 denote the weight estimates of the EWmodel and the 0-model,
respectively. �eir di�erences in squared bias and mean squared error are de-
�ned as

∆bias2 ∶= bias2(β̂0) − bias2(β̂EW)
and

∆MSE ∶=MSE(β̂0) −MSE(β̂EW),
respectively.

�eorem 1. Let y ∼ (Xβ, σ 2In×n), where ∣∣β∣∣2 < ∞, σ 2 > 0, and In×n is
the identity matrix of size n. Let β̄ ∶= 1

p ∑p
i=1 β i denote the mean of the

true weights.�en,
(1)�e minimum-bias equal-weighting estimator of γ is β̄.
(2) For orthonormal data matrix X (i.e., XT X = Ip×p),
(a) EW is the minimum-bias equal-weighting estimator,
(b) ∆bias2 = pβ̄2,
(c) ∆MSE = pβ̄2 − pσ 2,
(d)�e squared mean weight β̄2, and thus ∆bias2 and
∆MSE, is higher on a directed set of weights than
on an undirected set of weights.

Proof of �eorem 1. (1) �e bias of an equal-weighting estimator can be
written as follows:

∣∣E[β̂ − β]∣∣22 = ∣∣E[γ1 − β]∣∣22 (4.6)

= p∑
i=1(γ − β i)2 (4.7)

= p∑
i=1(γ2 − 2γβ i + β2i). (4.8)

�e derivative of the bias with respect to γ is then given by the following:

∂
∂γ

p∑
i=1(γ2 − 2γβ i + β2i) = p∑

i=1(2γ − 2β i), (4.9)

bounded rationality as regularization: shrinkage toward equal weights 69

Equating this derivative to 0 yields the following:

p∑
i=1(2γ − 2β i) = 0

2γp = 2 p∑
i=1 β i

γ = ∑p
i=1 β i

p
= β̄.

(2a) From here on, we assume that X is orthonormal, that is, XT X =
Ip×p . Recall that γEW is calculated using simple (univariate) linear regres-
sion on the model

ŷ = γX1, (4.10)

where γ is the equal-weighting parameter to be estimated and 1 is a column-
vector of ones of length p. De�ning c ∶= X1, the simple linear regression
estimate of Equation 4.10 is given by

γEW = ryc

sc
, (4.11)

where ryc is the sample correlation coe�cient between y and c, and sc is
the standard deviation of c. For y = Xβ + ε with E[ε] = 0, the expected
value of EW’s γEW is given by

E[γEW] = E[ryc

sc
]

= E[1T XT y
1T XT X1

]
= E[1T XT(Xβ + ε)

1T1
]

= E[1T XT Xβ
1T1

] +E[ε
1T1

]
= ∑p

i=1 β i

p
+ 0

= β̄.

(2b) We compute the squared biases for EW and the 0-model. Let
β̂EW = γEW1 and β̂0 = 0 the weight estimates for EW and the 0-model,

70

respectively.�en, the squared biases are given by

bias2(β̂EW) = ∣∣E[β̂EW] − β∣∣2
= (β̄1 − β)T(β̄1 − β)
= p (β̄)2 − 2 p∑

i=1 β̄β i + βT β

= βT β − p (β̄)2
= ∣∣β∣∣2 − p (β̄)2

bias2(β̂0) = ∣∣0 − β∣∣2
= ∣∣β∣∣2 .

�e di�erence in biases, ∆bias2, can be computed directly as follows:

∆bias2 = bias2(β̂0) − bias2(β̂EW)
= ∣∣β∣∣2 − (∣∣β∣∣2 − p (β̄)2)
= pβ̄2 .

(2c)�e variance for the 0-model is clearly 0. For the EW model, we
use Equation 4.11 to note that the EWestimate β̂EW = 1(1T XT X1)−11T XT y
is a linear function of y. �e trace of its variance tr(Var(β̂EW)) can thus
be written as follows:

tr(1(1T XT X1)−11T XT Var(y)X1(1T XT X1T)−11T)
= σ 2 tr(1(1T XT X1)−11T XT IX1(1T XT X1T)−11T)
= σ 2p.

�e result follows directly by adding these variances to the squared biases
from Result 2b.
(2d) It remains to show that the squared average weight (β̄)2 is larger

on a set of directed predictors than on an undirected set of predictors. Let
β∣∣ = (∣β1∣, . . . , ∣βp ∣) denote the weights on a positively directed data set.
�en the following holds:

(β∣∣)2 ≥ (β̄)2
∣β∣∣∣ ≥ ∣β̄∣
β∣∣ ≥ ∣β̄∣ .

�e last line follows directly from Jensen’s inequality for the convex func-
tion f (x) = ∣x∣.
Result 1 shows that minimum bias is achieved by setting the equal-weighting

constant (γ) to the mean of the true weights (β̄2). Result 2a shows that, in the

bounded rationality as regularization: shrinkage toward equal weights 71

special case of an orthonormal data matrix, γEW is an unbiased estimate of the
mean of the true weights and thus attains minimum bias. Result 2b shows that
the di�erence in bias between the 0-model and EW increases with the square
of the mean of true weights, in other words, with increasing distance of the true
mean of weights from zero. It follows that EW has lower mean squared error
than the 0-model if the decrease in bias is not canceled out by the increase in
variance that results from estimating γEW . In the case of an orthonormal data
matrix, this variance simply equals the product of the noise parameter σ 2 and
the number of features p (Result 2c).
Result 2d examines the impact of knowing feature directions. When feature

directions are known, features can be recoded to have the same direction, for
example, by multiplying the values of all negative features by −1. �is simple
operation does not change the biases of the 0-model, OLS, ridge regression,
and the Lasso. It does, however, reduce the bias of the EWmodel.

4.5 empirical analysis

Next we present simulation experiments that examine to which extent the re-
sults of�eorem 1 transfer from EW to STEW in a diverse set of simulated lin-
ear environments. Further below we then assess the predictive performance of
STEW in a set of single-shot real-world regression environments under varying
assumptions about the directability of features.
More speci�cally, we compare the predictive accuracy of a STEW-regularized

linear regression model, a Lasso-regularized regression model, ridge regres-
sion, the non-negative Lasso model (NNLasso), and the EW model. We also
tested non-negative least squares, which is NNLasso without the lasso regular-
ization but omit it from the plots because its performance always lagged behind
NNLasso.

▸ implementation details. �e regularization strength λ of all regularized
linearmodelswas chosen using k-fold cross validation.�e cross-validation pa-
rameter k was set to min(10, n), where n is the training set size. Model-speci�c
implementation details are provided in Appendix A.

4.5.1 Simulated Environments

We sampled data from the true model Y = X1β1 + ⋅ ⋅ ⋅ + X20β20 + ε, where
X i

i . i .d∼ N (0, 1) and ε i . i .d∼ N (0, 1). �e de�ning property of each environ-
ment was the prior distribution from which the weights β = (β1 , . . . , β20)
were sampled. For each environment, 400 data sets were sampled to compare
the predictive accuracy of STEW to that of the baselinemodels described above.
In all environments, when training sets were large enough, STEW, ridge regres-
sion, and the Lasso performed equally well, withMSE converging to irreducible
error. Our discussion will thus focus on small-to-medium sample sizes.

72

●

●

●

●

●
● ●

0

1

0 4 8
β

P
D

F
0

100

200

300

400

500

15 20 30 50 100 200

Training set size (log scale)

M
S

E

(a) β ~Uniform(2, 8)

●

●

●

●

●
● ●

0

1

0 4 8
β

P
D

F

0

100

200

300

400

15 20 30 50 100 200

Training set size (log scale)

M
S

E

(b) β ~Uniform(4, 6)

●

●

●

●

●
● ●

0

1

0 4 8
β

P
D

F

0

100

200

300

400

500

15 20 30 50 100 200

Training set size (log scale)

M
S

E

(c) β ~Uniform(0, 10)

●

EW

Ridge

Lasso

NNLasso

STEW

●

●

●

●

●
● ●

0

1

−2 −1 0 1 2
β

P
D

F

0

5

10

15

20

25

15 20 30 50 100 200

Training set size (log scale)

M
S

E

(d) β ~Uniform(0, 2)

●

●

●

●

●
● ●

0

1

−2 −1 0 1 2
β

P
D

F

2.5

5.0

7.5

10.0

15 20 30 50 100 200

Training set size (log scale)

M
S

E

(e) β ~Uniform(−0.5, 1.5)

●

●

●

●

●
● ●

0

1

−2 −1 0 1 2
β

P
D

F

2

4

6

8

15 20 30 50 100 200

Training set size (log scale)

M
S

E

(f) β ~Uniform(−1, 1)

●

EW

Ridge

Lasso

NNLasso

STEW

● ● ●
●

●

●

●

●

● ●

0

1

0 2 4
β

P
D

F

0

100

200

300

400

15 20 30 50 100 200 300 500

Training set size (log scale)

M
S

E

(g) 50% Sparsity

● ● ● ●

●

●

●

● ● ●

0

1

0 2 4
β

P
D

F

0

100

200

15 20 30 50 100 200 300 500

Training set size (log scale)

M
S

E

(h) 70% Sparsity

● ●
●

●

●

●
● ● ● ●

0

1

0 2 4
β

P
D

F

0

25

50

75

15 20 30 50 100 200 300 500

Training set size (log scale)

M
S

E

(i) 90% Sparsity

●

EW

Ridge

Lasso

NNLasso

STEW

Figure 4.3: Prediction error in environments
de�ned by uniform weight priors with the
same mean but di�erent variance (a–c), with
shi�ing support (d–f), and varying degrees of
sparsity (g–i). Probability density functions of
the weight priors are shown in green in the
top-right corner of each panel.

▸ Directable environments. We �rst analyze the ideal use case for STEW:
when weights are known to be positive (equivalently, if features are directable).
Recall that, in such an environment, STEW, EW, and NNLasso are able to di-
rectly use the knowledge that the weights are positive. On the other hand,
ridge regression and the Lasso cannot incorporate this information directly;
they learn it from the data.
Figure 4.3a shows the predictive performance of various models when β ∼U(2, 8). STEW performed best overall. EW performed relatively well when

training sets were small—although it was outperformed (as expected) by all
adaptively regularizing models for large sample sizes. STEW was able to com-
bine the strengths of di�erent models. For small sample sizes, STEW regular-
ized toward the EW solution and outperformed all competing models, includ-
ing EW. For large sample sizes, STEW performed as well as the other adaptively
regularizing linearmodels. Notice that, for small sample sizes, NNLasso was far
behind STEW, even though it also directly used the knowledge that the weights
are positive.

bounded rationality as regularization: shrinkage toward equal weights 73

One possible explanation for the superior performance of STEW compared
to NNLasso is that the prior distribution of the weights has relatively low vari-
ance. When variance is low, weights are relatively close to each other, creating
an environment that supports EW, and therefore STEW. We therefore examine
two additional environments, β ∼ U(4, 6) and β ∼ U(0, 10), that are identical
to β ∼ U(2, 8) in the shape of the distribution and their expected values but
di�er in their variance. �e results are shown in panels b and c of Figure 4.3.
STEW remained the best performing model in all three environments but its
relative advantage compared to the next best model, NNLasso, decreased with
increasing variance. In additional experiments, we increased the variance to
unrealistically high levels, up to β ∼ U(0, 50). �e results, provided in Figure
B.5 in the Appendix, remained qualitatively similar.

▸ Effect of directability. Weight priors used in panels d–f of Figure 4.3
follow a uniform distribution as before. �ey all have a support of length 2 but
di�er in the region of support. From panel d to f, the environments decrease in
the proportion of weights that are positive. In the β ∼ U(0, 2) environment, all
weights are positive. �is prior therefore represents a fully-directable environ-
ment.�e slightly shi�ed β ∼ U(−0.5, 1.5) environment can be interpreted as a
situation in which the user can direct some but not all the weights. Finally, the
β ∼ U(−1, 1) environment is symmetric around 0; weights cannot be directed.
With decreasing directability of weights, the performance of STEW, EW, and
NNLasso decreased relative to the performance of models which do not use
information about the direction of features. Yet STEW remained the best per-
forming model even in an undirectable environment. In contrast, NNLasso
performed considerably worse than ridge regression and the Lasso.

▸ High-dimensional environments with sparsity. On learning curves
presented so far, the early parts of the curves correspond to situations in which
the number of features (p) was moderately higher than the number of obser-
vations (n). But p was of the same order of magnitude as n. For the follow-
ing set of experiments, we increased the number of features to p = 200. In
addition, we introduced sparsity by setting some proportion of weights to ex-
actly zero. Weights were sampled from U(1, 3) and subsequently, conditional
on the outcome of a coin �ip, set to zero. �is coin �ip had success probability
P[β = 0] = ω, where ω is the expected degree of sparsity in the environment.
For example, if ω = 0.7, on average, 70% of the weights have a value of zero
while 30% of the weights follow a U(1, 3) distribution. Panels g to i of Figure
4.3 show the results. With 50% sparsity, STEW outperformed all other models
on large parts of the learning curve, especially when n << p. With increasing
sparsity, Lasso-type models increasingly bene�ted from their variable selection
property. With 90% sparsity, Lasso-type models outperformed STEW across
large parts of the learning curve.

74

▸ Empirical bias-variance analysis. Weights in the environment of Figure
4.4 follow aGaussian distributionwith zeromean andunit variance, β ∼ N (0, 1).
A Gaussian prior represents the ideal environment for ridge regression from a
Bayesian perspective.18 Surprisingly, STEW outperformed all other models in- 18 Hoerl and Kennard (1970)

cluding ridge regression across the entire learning curve.�e �gure also shows
the empirical bias-variance decomposition ofmean squared error, revealing the
di�erent approaches ridge regression and STEW take towards regularization.
For small sample sizes, ridge regression reduced variance to almost zero, with
error consisting almost entirely of bias. On the other hand, STEW was able to
substantially lower bias by allowing some variance.

●

●

●

●

●
● ●

0

1

−2 −1 0 1 2
β

P
D

F

5

10

15

15 20 30 50 100 200

Training set size (log scale)

M
S

E

●

EW
Ridge
Lasso
NNLasso
STEW

0

5

10

15

15 20 30 50 100 200

Training set size (log scale)

E
rr

or
 c

om
po

ne
nt

Sq. Bias Ridge

Sq. Bias STEW

Variance Ridge

Variance STEW

Figure 4.4: Prediction error (a) and empirical
bias-variance decomposition (b) in a Gaus-
sian environment.

4.5.2 Real-World Environments

Learning curves on real-world data sets (Figure 4) were computed as follows.
We pre-processed each real-world data set by standardizing responses and pre-
dictors to have zero mean and unit variance. Missing predictor values were
mean-imputed and observations with missing response values were removed
from the data set. We set aside a random subset of 10% of the observations as
test set. We then progressively sampled training sets of increasing size using
the remaining observations. Results were averaged across 200 repetitions, each
corresponding to a di�erent train/test-split of the data.
We compared the prediction performance of STEW, EW, elastic net, and

NNLasso on 13 real-world data sets under di�erent conditions regarding how
directable features are. Appendix C contains detailed descriptions of each data
set.
We �rst consider the Rent data set (described in Section 2.1.1), where the

problem is to estimate the response rent per m2 for 2053 apartments based on
10 features. In the �rst stage of our analysis, we directed features based on our
intuition. For example, the features the apartment has warm water (yes = 1,
no = 0) and the year of construction (in years) were both expected to be posi-
tively associated with the response. Figure 4.5a shows that both EW and STEW
clearly outperformed competing models across the entire learning curve on the

bounded rationality as regularization: shrinkage toward equal weights 75

0.85

0.90

0.95

1.00

4 6 10 20 50 100 300 700 1500
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

(a) Rent
(intuitively directed)

0.7

0.8

0.9

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

(b) Diabetes
(Lasso−directed)

0.5

0.6

0.7

0.8

0.9

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

(c) Mean across 13 data sets
(Lasso−directed)

0.85

0.90

0.95

1.00

4 6 10 20 50 100 300 700 1500
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

(d) Rent
(directed on training set)

0.7

0.8

0.9

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

(e) Diabetes
(directed on training set)

0.5

0.6

0.7

0.8

0.9

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

(f) Mean across 13 data sets
(directed on training set)

Figure 4.5: Median root mean squared error
(RMSE) with standard-error band across 200
repetitions.�e �rst column shows results on
the Rent data set, the second column on the
Diabetes data set, and the third column on
all 13 data sets. Features were directed based
on the intuition of the author (a), based on a
Lasso estimate on the whole data set (b, c), or
based on the training set (d–f).

intuitively directed Rent data set, with EW performing even better than STEW.
Intuitively guessing feature directions is not always easy. In theDiabetes data

set, in which a quantitative measure of disease progression of 442 diabetes pa-
tients needs to be predicted based on age, sex, body mass index, average blood
pressure, and six blood serummeasurements, we could not intuitively guess the
directions of most features. However, a physician probably could.
We simulated this type of expert knowledge as follows. We estimated a Lasso-

regularized model on the entire data set and chose the regularization strength
that resulted in the lowest cross-validated prediction error. We discarded all
features whose Lasso weight was zero and positively directed the remaining fea-
tures, that is, wemultiplied all featureswith−1 whose Lassoweightwas negative.
Figure 4.5b shows learning curves for Diabetes obtained in this way. EW

performed best until a training set size of 25 but fell behind for training set sizes
larger than 40. STEW could not match EW’s performance on small training
sample sizes. However, it clearly outperformed the elastic net and NNLasso on
small training set sizes and performed equally well with larger training set sizes.
Average learning curves across all 13 data sets are shown in Figure 4.5c. EW

performed best on very small training sets, STEW on small to medium train-
ing sets, and all adaptively-regularized linear models performed equally well
on large training set sizes. Individual learning curves on the other data sets
(available in Figure B.6 in the Appendix) show that STEW outperformed both
the elastic net and NNLasso on 5 out of 13 data sets, while showing comparable
performance in the remaining 8 data sets.

76

Even when no information about feature directions is available, directions
can still be estimated from the training set, for example, from Pearson correla-
tion coe�cients between the features and the response. Panels d to f of Figure
4.5 show learning curves when directions were estimated in this way. Averaged
across many data sets, STEW did not outperform the competing models but it
was robust in the sense that it did not perform worse than the elastic net. Indi-
vidual learning curves are available in Figure B.7 in the Appendix.

4.6 discussion

One may reasonably assume that STEW would perform well only in environ-
ments in which the true feature weights are almost equal.�is is clearly not the
case. STEW has proven to be useful in a wide range of synthetic and real-world
environments where any assumption of equal weights is clearly violated.
To understand how STEW can outperform models that shrink toward zero,

it has been instructive to contrast the two models that are obtained in the limit
of in�nite regularization: the equal-weights (EW)model and the 0-model. Our
theoretical results show that EW has lower bias than the 0-model and that this
di�erence increases with increasing directability of features. On data sets that
require strong regularization (for example, small data sets), STEW inherits this
relatively lower bias.
Sign-constrainedmodels such as NNLS or NNLasso also utilize information

on feature directions but generally did not perform as well as STEW in fully
directable environments. Furthermore, when directions were not available, or
were unreliable, these models failed to produce useful estimates whereas STEW
performed on par with other regularized linear models.
STEW showed surprisingly high prediction accuracy across a variety of p >

n environments. However, unlike Lasso-type models, STEW has no built-in
variable-selection mechanism. It is thus clearly not meant to be a model for
sparse recovery, that is, STEW is not expected to identify the non-zero weights
in a sparse environment. It could, however, potentially be developed further
to include a sparsity component or used in conjunction with existing methods
for variable selection. One possibility is a two-stage model, similar to Lasso +
OLS.19�e �rst stage of thismodel consists of �tting a Lassomodel on the entire 19 Efron et al. (2004) and Belloni and Cher-

nozhukov (2013)training data and subsequently discarding all features whose Lasso-estimates
are zero. �e �nal estimate is then obtained by �tting the second-stage model
on the reduced set of features. STEW could prove useful as a second-stage
model because the initial Lasso estimate not only takes care of discarding ir-
relevant features but also provides information about feature directions. STEW
and Lasso-type models exploit di�erent types of priors (or information) about
the environment. Developingmodels that can exploit both types of information
is a fruitful direction for future research.
In this chapter we studied the STEW regularization term in the regression

task only. �is seems to be usual in the regularization literature.20. I believe 20 For example, initial analysis of Lasso /
l1-regularization and ridge regression / l1-
regularization in machine learning was con-
ducted in regression settings (Hoerl and Ken-
nard, 1970; Tibshirani, 1996).

bounded rationality as regularization: shrinkage toward equal weights 77

that the reason for this focus on regression is supported by the fact that mean-
squared regression error can be easily decomposed into bias and variance com-
ponents (which facilitates theoretical analysis), whereas similar decompositions
are less intuitive for other loss functions.21 Whatever the reason may be, the 21 Friedman (1997) and Domingos (2000)

STEW regularization term can be easily used for linear models in other predic-
tion tasks as well. In fact, a STEW-regularized multinomial logistic regression
model will play a central role in the next chapter.

5
BOUNDEDLY RAT IONAL WHEN IT MATTERS MOST :
I T ERAT IVE POL ICY SPACE EXPANS ION IN
RE INFORCEMENT LEARN ING .

�is chapter is based on the articles “Iterative policy-space expansion in reinforce-
ment learning” (Lichtenberg and Şimşek, 2019a) and “Regularization in directable
environments with application to Tetris” (Lichtenberg and Şimşek, 2019b).

Reinforcement learning with function approximation can be interpreted as
a series of supervised learning tasks with the particularity that the training data
(pairs of states and their corresponding optimal actions) in a given iteration is
created by the agent itself, using the policy learned in the previous iteration.
�e general idea behind these algorithms is that a better policy approximation
allows the agent to create a better training data set for the next iteration, which
in turn allows the agent to learn an even better policy, and so on.
In a typical reinforcement learning application, however, the agent does not

know anything about its environment at the beginning of the learning process.
�e initial policy therefore is usually of low quality.1 A low-quality policy leads 1 Typically the initial policy is a uniformly

random policy or a deterministic policy ap-
proximator whose parameters are initialized
randomly (andwhich therefore, on average, is
not better than a uniformly random policy).

to a noisy data set, that is, only few states are mapped to optimal actions. A
noisy training data set in turn makes it di�cult for the agent to learn a better
policy in the next iteration.
Put di�erently, a good policy is not only the output of the learning process;

it is a signi�cant part of the learning process itself. Furthermore, this learning
process is of self-reinforcing nature: a good policy early on facilitates �nding
an even better policy quickly, whereas a bad policy early on further slows down
the learning process.
Existing classi�cation-based reinforcement learning algorithms largely ig-

nore this observation. Driven by the prospect of learning an expressive, near-
optimal policy at the end of the learning process, these algorithms use complex
policy approximation architectures, such as unconstrained linear functions or
deep neural networks, throughout the entire learning process. �e problem is
that these complex models tend to over�t the noisy data typically present at the
beginning of the learning process, resulting in weak policies early on, and thus
ultimately in long and tedious learning processes.

�e goal in this chapter is to accelerate the learning process by means of
adapting the di�culty of the policy learning task to the amount and quality
of data available to the agent. In particular, the policy learning task should be

80

simple in the beginning of the learning process and only become more di�cult
as quality and amount of data increases.
We propose a speci�c instantiation of this general idea in the context of

learning a linear policy using rollout-based reinforcement learning. �e pro-
posed algorithm is centered around the equal-weighting model and the shrink-
ing toward equal weights (STEW) regularization term studied in the previous
two chapters.
More speci�cally, the algorithm starts with the simple task of dividing the

available features into two groups: features that correlate positively with good
decision outcomes, called positive features; and features that correlate negatively
with good decision outcomes, called negative features. “Negative” here does not
mean that a feature is unimportant or irrelevant.�e word exclusively refers to
the sign of the feature’s weight, also called the feature’s direction.2 In this early 2 See also Section 2.2.1.

phase of the algorithm, the algorithm attributes equal importance to both pos-
itive and negative features. �e agent thus e�ectively uses an equal-weighting
policy, which serves as a catalyst for the learning process.
Once all feature directions have been learned, the algorithm uses the STEW

regularization term to gradually deviate from the equal-weighting policy and to
learn about the relative importances of features. Put di�erently, the agent �rst
learns the signs of the weights (a simple task) before learning their magnitudes
(a much more di�cult task).

�e idea that a sequence of progressively more di�cult tasks could acceler-
ate learning has been exploited in animal training where it is called shaping.3 3 Skinner (1958), Peterson (2004), Krueger

and Dayan (2009), and Bengio et al. (2009)Previous research has raised the question of whether learning machines could
bene�t from similar ideas. In robotics, learned dynamics from regions of easy
solvability are reused in more di�cult regions of the task environment.4 In cur- 4 Sanger (1994)

riculum learning,5 neural networks are trained with progressively more noisy 5 Elman (1993) and Bengio et al. (2009)

and less relevant training data. However, �nding a good curriculum is a di�-
cult problem and solutions are o�en task-speci�c.6 6 But see, for example, Graves et al. (2017).

�e algorithm proposed in this chapter does not require an external teacher
who guides the learning agent with a carefully tailored curriculum of tasks with
increasing di�culty. �e task di�culty is instead regulated intrinsically along
the following two dimensions. First, the agent initially learns weights näıvely
(as in naı̈ve Bayes), that is, without considering interdependencies among fea-
tures. Eventually, weights are estimated jointly. Second, the agent learns in a
decreasingly constrained policy space. We therefore call the algorithm iterative
policy space expansion, or IPSE.

�e main contribution of this chapter is both conceptual and algorithmic.
We�nd that reinforcement learning can be accelerated by using a formof intrin-
sically regulated curriculum learning, in which the task di�culty is regulated
by the capacity of the policy approximation architecture. In particular, the IPSE
algorithm relies on the boundedly rational equal-weighting strategy in the be-
ginning of the learning process, when resources aremost limited. When applied
to the problem of learning how to play the game of Tetris, the IPSE algorithm

boundedly rational when it matters most: iterative policy space expansion in reinforcement
learning. 81

learns considerably faster than approaches that do not take into account that
amount and quality of the resources available to the agent change over time.

�is chapter produces two further algorithmic contributions.�eM-learning
algorithm is a rollout-based reinforcement learning algorithm that interprets
the policy improvement step as a discrete choice problem. Weuse theM-learning
algorithm as a workhorse for the IPSE algorithm, but M-learning is a novel al-
gorithm by itself. It provides a useful alternative to existing classi�cation-based
reinforcement learning algorithms in environments for which policies aremore
naturally described by a discrete choice problem than by a classi�cation prob-
lem.

�e learning feature directions (LFD) algorithm provides a way of estimating
feature directions in Markov decision processes. Feature directions have been
identi�ed as building blocks not only for equal-weighting strategies but also
for other models of bounded rationality such as the take-the-best heuristic (see
Section 2.2.2).�erefore, we believe that the LFD algorithm could prove useful
as a building block in other reinforcement learning algorithms as well.

�e remainder of this chapter is organized as follows. Section 5.1 de�nes the
setting in which the remainder of this chapter operates. Section 5.2 de�nes the
M-learning algorithm and Section 5.3 de�nes the LFD algorithm.�ese two al-
gorithms are then combined to de�ne the IPSE algorithm in Section 5.4. Section
5.5 compares the IPSE algorithm to related algorithms in the literature. Section
5.6.1 provides background on the Tetris domain and de�nes it as a Markov de-
cision process. �e remainder of Section 5.6 then presents the results of our
Tetris experiments. Finally, 5.7 concludes this chapter and discusses possible
future work.

5.1 background & overview

�is chapter is concerned with learning in Markov decision processes, where
the agent inform its decision in a state s by observing action featuresϕ(s, a) ∈ Rp

for each available action a. In particular, we are interested in learning linear
policies of the form

π(s) = argmax
a∈A(s) βT ϕ(s, a), (5.1)

where β ∈ Π ⊆ Rp denotes the vector of feature weights to be estimated and
Π denotes the policy space. �e policy can be interpreted as a discrete choice
problem:7 choose one out of k = ∣A(s)∣ available actions. 7 See Section 2.1.2 for a detailed description of

the discrete choice problem and its di�erences
to the classi�cation problem.

In the following sections, wewill de�ne three reinforcement learning algorithms:
learning feature directions (LFD),M-learning, and iterative policy space expan-
sion (IPSE).�ese three algorithms are similar in that they all are rollout-based
algorithms, which are discussed in detail in Section 2.3.2 in the introductory
part of this dissertation. In particular, all three algorithms use the same rollout
mechanism (Algorithm 3) to create a new data set from the current policy.�e

82

three algorithms di�er in how a new set of weights β is learned from a given
data set and, in particular, the policy space Π they operate on.
We �rst de�ne M-learning and the LFD algorithm in Sections 5.2 and 5.3,

respectively. �e IPSE algorithm is then obtained by sequentially applying the
LFD algorithm and a regularized version of the M-learning algorithm, as ex-
plained in Section 5.4.

5.2 m-learning

Herewepresent a novel rollout-based reinforcement learning algorithm to learn
a linear policy, calledM-learning. Similar to classi�cation-based reinforcement
learning algorithms,8 M-learning learns a new policy by training a supervised 8 See Section 2.3.2.

learning algorithm on a data set of decisionsmade using rollouts. M-learning is
di�erent from classi�cation-based algorithms in that it interprets policy learn-
ing as a discrete choice problem, rather than a classi�cation problem.9 Speci�- 9 See Section 2.1.2 on a discussion about the

di�erences between discrete choice and clas-
si�cation.

cally, it uses multinomial logistic regression to train a new policy on choice set
data.
Because discrete choice requires observed choices (or choice sets) as train-

ing data, the data-collecting process is slightly di�erent to that of classi�cation-
based reinforcement learning algorithms. In what follows, we �rst describe how
M-learning constructs a training data set of observed choices beforewe describe
how (regularized) multinomial logistic regression can be used to learn a new
policy.�e pseudo-code for M-learning is provided in Algorithm 5.

▸ Data-set construction. �e agent starts with an empty training data setD = ∅ to which one training sample is added a�er each interaction with the
environment.10 A single training sample (that is, one choice set) is generated as 10 �at is, M-learning is an online algorithm

in the sense that the training set is created us-
ing the current state of the environment.�is
stands in stark contrast with existing rollout-
based algorithms that use a pre-existing set of
rollout starting states in every iteration, see,
for example, Lagoudakis and Parr (2003) and
Scherrer et al. (2015).

follows.

1. For every available action in the current state, use the Rollout procedure
(given in Algorithm 3) to generate a rollout estimate of the action’s utility.

2. Let ã denote the action that returned the highest mean estimated rollout
value.�e agent executes this action and observes the next state of the envi-
ronment.

3. Add the sample, (ã, ϕ(s, a1), ..., ϕ(s, a∣A(s)∣)) to the training set D, where
the predictors are the feature values of all available actions in state s and the
response variable is the identity of the selected action.

�e agent only keeps the most recent n ∈ N choice sets in D. �e parameter n
should be high enough such that the supervised learning algorithm has enough
data to train a new policy, but not too high to not learn on data that is too old
(and thus was created using a not-as-good rollout policy).

▸ Training a new policy. Periodically (in our case, a�er each rollout proce-
dure), feature weights are updated through multinomial logistic regression on

boundedly rational when it matters most: iterative policy space expansion in reinforcement
learning. 83

Algorithm 5M-learning to learn a policy π.
Notation: p ∈ N is the number of features,A(s) is the set of actions available
in state s.
Output: β ∈ Rp , a vector of action-utility weights, initialized randomly.
Input:
U(s, a) = f (β, ϕ(s, a)), where // action-utility function, e.g., linear

ϕ(s, a) ∈ Rp // vector of state-action featuresD = ∅ // data structure to store choice sets (e.g., Table 2.2)
M ∈ N // number of rollouts
T ∈ N // rollout length
γ ∈ [0, 1] // discount factor
n(k) ∶ N→ N // batch size at step k
πr(s, β) ∶ S ×Rp → R // rollout policy that returns an action for given s and β

s ← state sampled from initial state distribution
for k = 0, 1, 2, . . . do
for all a ∈ A(s) do

Û(s, a)← Rollout(s, a, πr(s, β),M , T) // see Algorithm 3
end for
ã ← argmax

a∈A(s) Û(s, a)
Take action ã and observe new state s′
if s′ is not terminal thenD ← D ∪ {{ã, ϕ(s, a1), ϕ(s, a2), ..., ϕ(s, a∣A(s)∣)}} // append choice set

s ← s′
else

s ← state sampled from initial state distribution // reset episode
end if
Construct batchDk using n(k)most recent choice sets fromD
Update β using multinomial logistic regression on batchDk

end for

84

the accumulated training set. �e new set of weights maximizes the likelihood
of the selected actions in the training set if the agent were to use action-selection
probabilities

p(s, a) = eU(s ,a)
∑a′∈A(s) eU(s ,a′) ,

where U(s, a) ∶= βT ϕ(s, a) is the utility11 of an action a in state s. �e corre- 11We explicitly do not use the term “value”
here, because the utility in this context is not
necessarily an estimate of the entire expected
cumulative return obtained a�er taking the
action. �e utility de�ned here is only mean-
ingful relative to the utilities of other actions
in the same state.

sponding log-likelihood, given by

logL(β∣D) = ∑(s i , ã i)∈D
log(p(s i , ã i)), (5.2)

where ã i is the action that was selected in the i-th choice set of the training setD. Note that log(p(s i , ã i)) depends on β because U(s, a) depends on β.

▸ Regularized M-learning. Let P(β) denote a regularization term and let
λ ≥ 0 denote a regularization strength. A regularized version of M-learning is
easily obtained by maximizing the following modi�ed log-likelihood function

logL(β∣D) − λP(β),
where λ > 0 is the regularization strength.
In Section 5.4, we will use M-learning with STEW regularization. In Chapter
4 we found, in the context of regression, that the STEW model performs par-
ticularly well if feature directions are known beforehand and used to direct all
features to have positive weights.12 In the following section we propose an al- 12 See also Section 2.2.1.

gorithm that learns feature directions in a rollout-based reinforcement learning
setting.

5.3 learning feature directions (lfd)

We present a learning algorithm, named LFD, that learns feature directions for
a linear policy in a Markov decision process. In the context of Equation 5.1, the
goal here is to learn a policy

π(s) = argmax
a∈A(s) dT ϕ(s, a), (5.3)

where d ∈ {−1, 0, 1}p are the feature directions to be estimated. Note that the
weights in Equation 5.3 are invariant to scaling: the policy remains unchanged
when all weights d are multiplied with the same positive scalar.
On a high level the LFD algorithm works as follows. Feature directions are

initialized to zero; they are said to be undecided. �e agent navigates the en-
vironment using a rollout mechanism to select actions and keeps track of how
o�en each feature is associated positively and negatively with selected actions.
A feature is assigned a direction when the di�erence between positive and neg-
ative associations is deemed to be signi�cant. �e algorithm terminates when

boundedly rational when it matters most: iterative policy space expansion in reinforcement
learning. 85

Algorithm 6 Learning feature directions (LFD)
Output:
d ∈ {−1, 0, 1}p // feature directions, initialized to 0
Input:
α ∈ (0, 1) // signi�cance threshold
πr(s, d) ∶ S × {−1, 0, 1}p → A // rollout policy using current feature directions

s ← state sampled from initial state distribution
n+i ← 0; n−i ← 0, for i = 1, . . . , p // initialize positive and negative training instances
while not all directions are learned do
for all a ∈ A(s) do

Û(s, a)← Rollout(s, a, πr(s, d)) // see Algorithm 3
end for
ã ← argmax

a∈A(s)
Û(s, a)

Take action ã and observe new state s′

if s′ is not terminal then
for all i = 1, . . . , p do
∆ i = sgn (∑a≠ã sgn (ϕ i(s, ã) − ϕ i(s, a)))
n+i ← n+i +max(∆ i , 0)
n−i ← n−i −min(∆ i , 0)
p-val← test H0 ∶ n+i /(n+i + n−i) = 0.5
if p-val < α then

d i ←
⎧⎪⎪⎨⎪⎪⎩

1 if n+i > n−i
−1 otherwise

end if
end for
s ← s′

else
// reset episode
s ← state sampled from initial state distribution

end if
end while

86

all feature directions have been decided. Pseudo-code for LFD is provided in
Algorithm 6.

�e LFD algorithm uses the same basic rollout mechanism as M-learning
but uses the rollout data in a di�erent way, as described next.�e rollout policy
utilizes features for which a direction has already been determined, while ig-
noring features with undecided directions.�at is, the rollout policy is given by
πr(s) = argmax

a∈A(s) dT ϕ(s, a), where d is the vector of current direction estimates.

Let ã denote the action chosen by such a rollout procedure for a given state s
and let

ϕ(s, a1), ϕ(s, a2), . . . , ϕ(s, a∣A(s)∣)
denote the feature values of all actions available in state s. Furthermore, let sgn
denote the mathematical sign function:

sgn(x) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if x > 0
0 if x = 0
−1 if x < 0.

A training instance ∆ i for feature ϕ i compares the feature values of the selected
action ã to the feature values of all other available actions in the same state. A
training instance can be positive or negative and is de�ned as

∆ i = sgn (∑
a≠ã
sgn (ϕ i(s, ã) − ϕ i(s, a))).

For example, a positive training instance means that feature value ϕ i was larger
for the chosen action ã than for other actions more o�en than it was smaller.
Let n+i denote the number of positive training instances and let n−i denote

the number of negative training instances. A feature is assigned a direction only
a�er the di�erence between n+i and n−i is found to be statistically signi�cant. We
use a two-sided exact binomial test13 with null hypothesis that feature ϕ i has no 13 See, for example, Howell (2009).

direction, that is,
H0∶ n+i

n+i + n−i = 0.5.
If the resulting p-value is smaller than some pre-de�ned threshold α, the feature
is assigned the direction d i = sgn(n+i − n−i).

5.4 iterative policy-space expansion (ipse)

Herewe combine the LFD algorithm andM-learningwith STEWregularization
to construct a reinforcement learning algorithm that decouples the estimation
of weight signs from the estimation of weight magnitudes. LFD is employed
�rst, until all feature directions are learned.�e algorithm then switches to M-
learning, treating the learned directions as useful prior knowledge.
Under conditions de�ned further below, the combined algorithm learns in

a monotonically expanding policy space. For this reason we call this algorithm

boundedly rational when it matters most: iterative policy space expansion in reinforcement
learning. 87

iterative policy-space expansion, or IPSE. Note that building blocks other than
LFD or M-learning could be used to create algorithms that learn in monotoni-
cally expanding policy-spaces. In the remainder of this chapter we will use the
acronym IPSE to refer to the version that uses LFD andM-learning with STEW
penalty.

▸ The transition from LFD to regularized M-learning. �e direc-
tions learned in the �rst phase of the IPSE algorithm (using the LFD algorithm)
implicitly de�ne an equal-magnitudes policy. In the second phase of the IPSE
algorithm the weights are allowed to gradually deviate from this strongly con-
strained solution, as more high-quality training data is obtained. To this aim,
we use M-learning with the regularization term

Pd(β) = ∥β − d∥22 = p∑
i=1(β i − d i)2 ,

where d are the directions obtained by the LFD algorithm. �e corresponding
maximization problem that is solved in every iteration of the M-learning phase
is given by

argmax
β∈Rp

logL(β∣D) − λ∥β − d∥22 , (5.4)

where λ > 0 is, as always, the regularization strength. �e complete algorithm
is given in Algorithm 7.

Algorithm 7 Iterative policy space expansion (IPSE) to learn a linear policy π.
Output:
π(s) ∶ S → A // policy that returns an action a ∈ A for given state s ∈ S
// Phase 1: learn feature directions.
d ← LFD // Algorithm 6
// De�ne regularization term based on learned directions.
Pd(β) = ∥β − d∥22
// Phase 2: regularized M-learning.
β ←M-learning with Pd(β)-regularization // Algorithm 5

In the context of the discrete choice problem considered here, and if all fea-
tures are directed to be positive, the penalty term Pd(β) is equivalent to the
STEW penalty term de�ned in Section 4.2 in the previous chapter.14 In the re- 14 See Appendix A for a more detailed expla-

nation of the equivalence between both regu-
larization terms in the present context.

mainder of this section, we therefore refer to Pd(β) as a STEW penalty.
▸ The policy space of IPSE. We derive necessary conditions on the regu-
larization strength of the STEW penalty (controlled by the parameter λ) that
ensure that IPSE learns in monotonically expanding policy spaces. �e policy
space at any given iteration is characterized by the values that the policy weight
vector β can attain. Initially, IPSE learns directions using the LFD algorithm;

88

the policy space is therefore constrained to be ΠLFD = {−1, 1}p . Figure 5.1 shows
this policy space when there are p = 2 features.

Figure 5.1: Policy space of the LFD algorithm
for p = 2 features. �e policy space is given
by ΠLFD = {(−1,−1), (−1, 1), (1,−1), (1, 1)}.

During the M-learning phase, the policy space is a function of the regular-
ization term used with multinomial logistic regression and the corresponding
regularization strength λ . For λ = 0 (that is, no regularization at all), the policy
space is simply given by Rp . For λ > 0, we can reformulate the unconstrained
optimization problem of Equation 5.4 as the constrained optimization problem

argmax
β∈Rp

logL(β∣D), such that ∥β − d∥22 ≤ c(λ),
where c(λ)∶R+

0 → R+
0 is a decreasing function of λ, for which the following

holds true: c(λ)→∞ for λ → 0; and c(λ)→ 0 for λ →∞.
It follows that the policy space for a given λ during the M-learning phase is

given by

Πλ = {β ∈ Rp ∣ p∑
i=1(β i − d i)2 ≤ c(λ)}, (5.5)

which is a hypersphere around the equal-weights solution that was found by
the LFD algorithm.�e size of that hypersphere is a decreasing function of the
regularization strength λ. Figure 5.2 sketches Πλ , as a function of decreasing
regularization strength λ, for p = 2 features and d = (d1 , d2) = (−1, 1). For
p = 3 the policy space Πλ would be a sphere, centered around the point d =(d1 , d2 , d3), whose size increases with decreasing λ.

Figure 5.2: Policy space Πλ (Equation 5.5)
for p = 2 features as a function of the reg-
ularization strength λ, if the feature direc-
tions learned by the LFD algorithm in the �rst
phase were d = (−1, 1). �e policy space ex-
pands as λ decreases.

Let {λk}∞k=1 denote a sequence of decreasing regularization strengths. It then
follows that d ⊂ Πλk ⊂ Πλk+1 ⊂ Rp , or in other words, the policy space is
monotonically expanding.

▸ Choice of λ. In practice, the regularization strength of regularized linear
models is usually chosen using cross validation (compare, for example, Section
4.5). Here, we use a pre-de�ned schedule of decreasing regularization strengths
in order to ensure a monotonically expanding policy space. We generally aim
to �nd a schedule that satis�es the following two properties.

1. �e regularization strength should initially be high enough to ensure a smooth
transition from LFD to M-learning.

2. �e regularization strength should decrease rapidly enough so that the pol-
icy space is not overly constrained for too long.

Both these properties are satis�ed in the following example.

▸ Example weight trajectories. Figure 5.3 shows policy weight trajecto-
ries of the IPSE algorithm obtained while learning to play Tetris (see Section
5.6.1 for a detailed description of the experimental setup). IPSE used regulariza-
tion strength λk = 5/k in the k-th iteration of STEW-regularized M-learning.
Each curve shows the weight estimate of one of the eight features as learning
progresses.

boundedly rational when it matters most: iterative policy space expansion in reinforcement
learning. 89

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

● ●

Learning feature directions (LFD) M−learning

−1.0

−0.5

0.0

0.5

1.0

0 5 10 20 30 40 50
Iteration

W
ei

gh
t e

st
im

at
e

Tetris feature

●

Rows with holes

Column transitions

Holes

Landing height

Cumulative wells

Row transitions

Eroded cells

Hole depth

Figure 5.3: Policy weight trajectories of the
IPSE algorithm in Tetris. �e dashed verti-
cal line signi�es the transition from the LFD
algorithm to M-learning with STEW penalty.
Weights were rescaled such that the weight
rows with holes always had an absolute value
of 1.

All weights were initialized to zero and the LFD algorithm started to learn
feature directions. In this particular example, the last missing direction was
learned at iteration 36, as indicated by the dashed grey vertical line. Speci�cally,
all features were assigned a negative direction of −1, except Eroded cells, which
was assigned a positive direction of 1. In the iterations directly following the
transition to M-learning, the estimated weights remained relatively close to the
equal-weighting solution, indicating that the policy space was still tightly con-
strained around the LFD solution. As the regularization strength decreased, the
policy space expanded and the feature weight estimates increasingly deviated
from the equal-weighting solution.

5.5 related literature

▸ Curriculum reinforcement learning. Various curriculum learning15 15 Bengio et al. (2009)

approaches have been proposed for reinforcement learning.16 �e most direct 16 See Narvekar et al. (2020) for a recent sur-
vey.approach is to generate a sequence of related MDPs of increasing di�culty. For

example, for the game of chess a curriculum could be created by considering
smaller “sub-games” with smaller board sizes, fewer pieces, or simpli�ed rules.
One obvious downside of this explicit form of curriculum learning is that the
sequence of MDPs has to be de�ned by an expert before learning starts or dur-
ing the learning process (similar to interactive reinforcement learning17), which 17 �omaz and Breazeal (2006)

might not always be as easy to achieve as in the chess example.

▸ Regularization in reinforcement learning.�e IPSE algorithmuses
di�erent forms of regularization to adapt the policy learning task di�culty through-
out the learning process. Previous work has studied regularization in the con-
text of reinforcement learning.18 For example, Loth et al. (2007) use Lasso/l1- 18 Xu et al. (2007), Loth et al. (2007), Farah-

mand et al. (2008, 2009), and Farebrother et
al. (2018)

regularization19 to induce sparsity in the value function approximator in the
19 See Section 4.1 for a discussion of Lasso (or
l1) regularization in the context of regression.

90

context of a temporal di�erence learning. Farebrother et al. (2018) studywhether
l2-regularization or dropout regularization20 in DQN networks helps the rein- 20 Srivastava et al. (2014)

forcement learning agent to generalize better to unknown domains.
�ere are several di�erences between this chapter and the studiesmentioned

above. First, the regularization used in the IPSE algorithm is centered around
the equal-weighting strategy and uses the STEW regularization term, whereas
the other works study l1, l2, or dropout regularization. Second, the IPSE al-
gorithm studies regularization as intrinsically regulated curriculum learning
to speed up learning, whereas existing work focusses on generalization to un-
known domains and estimation error of value functions.

5.6 experiments

We next present results from our experiments in Tetris. �e main objective of
these experiments is to examinewhether the IPSE algorithm can learn an expert
Tetris policy more quickly than existing state-of-the-art algorithms. Further-
more, we perform several ablation studies to analyze the relative importance of
various elements of the IPSE algorithm.

Figure 5.4: Tetris on the Nintendo Game Boy.

5.6.1 Tetris

�e video game Tetris (Figure 5.4 shows a screenshot of the game) is an impor-
tant benchmark for arti�cial intelligence research and, in particular, reinforce-
ment learning. A history of Tetris as well as a summary of existing machine
learning solutions to the game can be found in Algorta and Şimşek (2019).
Tetris is played on a two-dimensional grid (also called board), which is empty

at the beginning of the game. �e board is �lled up by pieces that are falling
down from the top, one at a time. �e pieces are of di�erent shapes but always
�ll out 4 connected grid cells.�ey are shown in Figure 5.5.

Figure 5.5:�e seven Titriminos of size 4 used
in the classic version of Tetris.

While the pieces are falling down, the player can rotate the pieces and move
them horizontally to determine where, and in which position, the piece lands.
�e player can create new space on the board by clearing lines: whenever an
entire row on the board is �lled with pieces, the whole row is deleted.�e game
ends when the board is so full that the next piece cannot appear on the board.

▸ Tetris in reinforcement learning. Tetris can be formulated as aMarkov
decision process, where the state consists of the board con�guration and the
identity of the falling tetrimino. Available actions are the possible placements
of the tetrimino on the board. �e number of actions available in a given state
ranges from 0 to 34. Figure 5.6 shows an example of possible placements (bot-
tom row) for a given state (top row). A reward of 1 is received for each cleared
line. �e game ends when a state allows no further legal placement. We used a
board size of 10 × 10 in all experiments.
We use eight features to describe a state-action pair: landing height, number

of eroded piece cells, row transitions, column transitions, number of holes, number

boundedly rational when it matters most: iterative policy space expansion in reinforcement
learning. 91

Figure 5.6: Top row: example of a tetris state
on a 7× 6 board. Bottom row: all seven avail-
able actions as de�ned by the possible place-
ments of the falling Tetrimino.

of board wells, hole depth, and number of rows with holes.�ese features are from
earlier work by�iery and Scherrer (2009a), who describe them in detail.

▸ Algorithms. We compared the IPSE algorithm to a state-of-the-art algo-
rithm from the literature and several modi�cations of the IPSE algorithm

Classi�cation-based modi�ed policy iteration,21 or (CBMPI), is the best-performing 21 Gabillon et al. (2013) and Scherrer et al.
(2015)reinforcement learning algorithm for Tetris reported in the literature. �e

algorithm is described in detail in Appendix A.

LFD learns feature directions using the LFD algorithm and uses these feature
directions to de�ne an equal-weighting policy.

M-learning (STEW) directly starts with the second phase of the IPSE algo-
rithm without learning feature directions beforehand. �is is Algorithm 5
with STEW regularization.

M-learning (STEW, known directions) is given prior knowledge about feature
directions.22 �is algorithm thus can “skip” the LFD phase. �e algorithm 22 �e feature directions were obtained from

the weights of the BCTS policy (�iery and
Scherrer, 2009a).�e same feature directions
were also used in Şimşek et al. (2016).

is considered an upper baseline.

M-learning (no regularization) is Algorithm 5 without any regularization.

Learning performance was measured by the quality of the policy as a function
of the computational resources used during learning. �e quality of a policy
can be easily estimated by playing some test games and averaging the scores.
Yet because di�erent algorithms use di�erent learning mechanisms, we require
a common unit of measurement for the amount of resources used across all
algorithms. In line with previous work on Tetris,23 we used the number of calls 23 Scherrer et al. (2015) and Lazaric et al.

(2016)to the generative model of the Tetris engine as the central metric for resource
intensiveness. Next we describe how the this metric depends on the rollout
parameter settings for di�erent algorithms.

▸ Rollout parameter settings. �e IPSE algorithm, LFD + EW, as well as
the various versions of M-learning all use a similar rollout procedure, in which
only the current state of the environment is used as a rollout starting state. We

92

used the same rollout parameters for all these algorithms. In a given state, the
algorithms computedM = 10 rollouts of length T = 10 for each available action.
Given that the number of actions is always smaller than 34, themaximumnum-
ber of calls to the generative model of Tetris for one iteration of the respective
algorithm was at most 34TM = 3400.

�is is di�erent for CBMPI.�e CBMPI algorithm uses a pre-computed set
of rollout starting states. In each iteration of the algorithm, the algorithm per-
forms a rollout on a large number of rollout starting states, thus requiring more
calls to the generative model per iteration. �e Tetris results for CBMPI re-
ported by Scherrer et al. (2015) on the 10× 10 board used a per-iteration budget
of 8,000,000 calls to the generative model. In comparison, the total budget
(a�er 400 iterations) we used for all other algorithms was 1,360,000. In order
to compare the algorithms meaningfully, we experimented with CBMPI using
budgets in the same range asM-learning. We present results with CBMPI using
a per-iteration budget of 170,000 (resulting in 8 iterations of the algorithm).

▸ Results. A�er each iteration of the algorithm, the quality of the learned pol-
icy was evaluated by playing 10 games of Tetris. Figure 5.7 shows mean scores
across 100 replications, with shaded areas corresponding to standard error of
the mean.

●●
●

●

●

●

●
●●●●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●
●

●

●

●

● ● ● ●

0

1000

2000

3000

0 25 50 100 150 200 250 300 350 400
Iteration

M
ea

n
sc

or
e

●

●

M−learning (STEW, known directions)

IPSE (LFD, then M−learning)

M−learning (STEW)

M−learning (STEW, cross−validated λ)

LFD

M−learning (no regularization)

CBMPI

Figure 5.7: Quality of the policy learned as
a function of the iterations of the algorithm.
Each learning curve shows means across 100
replications of the algorithm. Quality of the
policy is measured by the mean score ob-
tained by the policy in 30 Tetris games.

M-learning with given feature directions represents an upper baseline. �is
is the dotted line in the �gure. Among algorithms that were not given prior
knowledge about feature directions, IPSE showed the highest learning rate and
learned the best policies overall. Furthermore, it rapidly approached the ceil-
ing performance obtained with known feature directions. All other algorithms
learned more slowly. At 400 iterations, there was a large performance gap be-
tween IPSE and all other algorithms.

�e hypothesis that IPSE bene�ts from learning directions independently

boundedly rational when it matters most: iterative policy space expansion in reinforcement
learning. 93

was supported by the strong performance of the standalone LFD algorithm at
the beginning of the learning curve. �is indicates that IPSE could fruitfully
use the näıve direction estimates as a stable basis for later learning.

�e results obtained for the standalone LFD algorithm also support another
hypothesis developed in the previous two chapters: Always using the same sin-
gle model of bounded rationality (equal weighting, in this case) does not yield
the best results. Using LFD (and thus, equal weighting) across the entire learn-
ing process did not perform as well as the IPSE algorithm, which used equal
weighting at the beginning of the learning process but shi�ed to a more data-
driven approach as more data became available.

5.7 discussion

In 1772, Benjamin Franklin received a plea for advice on a di�cult career de-
cision from his friend and fellow scientist Joseph Priestley. 24 In his reply, he 24 Franklin (1987)

described what later became known as Franklin’s rule:25 25 Gigerenzer et al. (1999)

“My way is to divide half a sheet of paper by a line into two columns, writing
over the one Pro, and over the other Con. [. . .] I put down under the di�erent
heads short hints of the di�erent motives that at di�erent times occur to me for
or against the measure. When I have thus got them all together in one view, I
endeavor to estimate their respective weights [. . .] If I judge some two reasons
con equal to some three reasons pro, I strike out the �ve; and thus proceeding I
�nd at length where the balance lies [and] come to a determination accordingly.”
(p. 878 in Franklin, 1987)

Almost 250 years later, pros-and-cons lists are still used extensively. Whatmakes
such a simple tool so e�ective? One aspect could be that the main problem of
estimating the relative importance of arguments is facilitated by �rst solving the
much simpler subproblem of deciding—for each feature individually—whether
it is positively or negatively associated with the response.

�e IPSE algorithm presented in this chapter is similar to Franklin’s rule in
that the algorithm �rst learns, for each feature individually, whether it is pos-
itively or negatively associated with good decision outcomes. Similar to how
people structure their thoughts by categorizing arguments into pro and contra,
learning feature directions has proven to be a useful building block for learning
more complex policies.

�e experimental results presented here showed that reinforcement learning
algorithms can bene�t from learning in a policy space that initially is strongly
constrained but expands during the learning process. Adecreasingly constrained
policy space could also be seen as an increasingly capable cognitivemechanism,
which is consistent with the view of the cognitive mechanism of humans and
great apes that initially has very low capacity but grows during development.26 26 Krueger and Dayan (2009), Brown et al.

(2005), and Miller and Cohen (2001)An interesting direction for future work is to extend the approach presented
in this chapter to reinforcement learning agents with non-linear function ap-
proximators such as arti�cial deepneural networks. Everything else being equal,

deep neural networks are more prone to over�tting small data sets than linear
functions. I believe that accounting for limited resources at the beginning of the
learning process therefore could be evenmore bene�cial for deep reinforcement
learning agents than for linear agents. However, it is unclear whether the notion
of feature directions is useful for certain neural network architectures such as
convolutional neural networks.

Part III

BOUNDEDLY RAT IONAL ACT ION SELECT ION

6
SAT I SF IC ING POL IC I E S IN MARKOV DEC I S ION
PROCES SE S

Herbert Simon’s satis�cing strategy1 for decision making is simple: consider 1 Simon (1956)

decision alternatives sequentially and select the �rst alternativewhose estimated
value is higher than a pre-speci�ed aspiration level.�e possible bene�t of such
a strategy compared to the value-maximizing approach is the following. If a
satisfying alternative is found early, there is no need to consider and evaluate the
remaining alternatives, which can result in considerable computational savings.
And yet, despite its simplicity and apparent possible advantages, the satis�cing
strategy has seen only very limited applications in arti�cial intelligence research.

�e reason for the negligence of satis�cing and other models of bounded
rationality does not always seem to be a disbelief in or a rejection of the notion
of bounded rationality per se. For example, Russell and Norvig (2010, p. 1049)
write that
... [satis�cing] appears to be a useful model of human behaviors in many cases. It
is not a formal speci�cation for intelligent agents, however, because the de�nition
of ‘good enough’ is not given by the theory.

In this chapter I propose several strategies for setting aspiration levels in sequen-
tial decision making problems under uncertainty and compare these strategies
to the classical value-maximizing strategy for decision making.
I start by formalizing a satis�cing strategy for use in Markov decision pro-

cesses. More speci�cally, I propose the ξ-satis�cing policy, which, in the spirit of
Simon’s work, considers available actions sequentially and selects the �rst action
whose value is larger than the policy aspiration level ξ. By selecting a possibly
sub-optimal action before all actions are considered, the satis�cing policy trades
o� action quality against computational e�ort.
I �rst analyze e�ort and quality of the ξ-satis�cing policy, as a function of the

aspiration level ξ, in the simpli�ed setting of a single decision within a Markov
decision process. �is analysis indicates that the e�ort-quality trade-o� curve
o�ered by the ξ-satis�cing policy is highly non-linear in the sense that it yields
a large reduction of e�ort for a small loss in quality.

�is initial analysis also directly informs the development of three aspiration
adaption rules, which are rules for setting aspiration levels dynamically when
the ξ-satis�cing policy is used at each decision stage of the Markov decision
process.

98

�e �rst of these rules is aspiration tracking.�eoretical analysis in the con-
text of deterministic Markov decision processes shows that when the agent has
access to an optimal value function, the satis�cing policy with aspiration track-
ing is provably more e�cient than the value-maximizing (greedy) policy in the
sense that the former requires less expected e�ort than the latter, without giving
up any expected quality at all.
I evaluate the performance of aspiration tracking in a deterministic grid-

world environmentwith a large discrete action space, where the evaluation of all
actions (as required by the greedy policy) is a computational bottleneck. When
given access to an optimal value function, a satis�cing agent using aspiration
tracking reaches optimal return while requiring, on average, less than 10% of
the e�ort required by the greedy policy.
In many complex reinforcement learning domains, however, the optimal

value function is usually only approximated.2 I show that the aspiration track- 2 See Sutton and Barto (2018, Part II) or Sec-
tion 2.3.ing rule is prone to accumulating small approximation errors, which can dete-

riorate the performance of the satis�cing policy.�is leads to the development
of two other aspiration adaption rules, called value tracking and valved value
tracking, which are less vulnerable to approximation errors of the value func-
tion.
I evaluate all three aspiration adaption rules in the gameLunar-Lander, where

the optimal value function is approximated by an arti�cial neural network. On
average, a satis�cing agent using valved value tracking reaches the same return
as the greedy policy while requiring around 76% of the greedy policy’s e�ort.
A satis�cing strategy is only useful if the corresponding e�ort reduction is

not o�set by the e�ort required to determine an appropriate aspiration level in
the �rst place.3 �e aspiration adaption rules proposed in this chapter require 3 See also the related discussion about meta-

level optimization in Section 2.3.little e�ort. �ey are de�ned by cognitively plausible recursive functions such
as the simple di�erence between two real-valued numbers.

�e main contribution of this chapter is two-fold. First, I show that the sat-
is�cing strategy can be successfully integrated into Markov decision processes
by proposing cognitively plausible update rules for setting aspiration levels dy-
namically. Second, I provide theoretical evidence and experimental support
that a boundedly rational satis�cing agent using these aspiration adaption can
be more resource-e�cient than the perfectly rational greedy policy in the sense
that the former requires less expected e�ort but yields the same expected quality
as the latter.

6.1 preliminaries

In this chapter, I consider value-based reinforcement learning in sequential de-
cision making problems that can be modeled as Markov decision processes
(MDP).4 We assume that the action space A(s) in any given state s is discrete 4MDPs were introduced in Section 2.3.

and we are especially interested in domains where the number of available ac-
tions, denoted by ∣A(s)∣, is large. To reduce notation, we make the assumption

satisficing policies in markov decision processes 99

that there is only one initial state s0. All results presented in this chapter hold
conceptually if the initial state is instead sampled from an initial state distribu-
tion.
We will analyze the computational e�ort required by various value-based

policies when an action-value function qπ is given.5 We will consider both tab- 5 Unless explicitly speci�ed, we do not make
any assumption on the policy π that is eval-
uated by qπ . In particular, q is not necessar-
ily the optimal value function. We merely re-
quire that the agent has access to amechanism
that provides an estimated value for a given
state-action pair, or a feature representation
thereof.

ular algorithms and algorithms that use function approximation to represent
the value function. When function approximation is used, we consider deep
neural networks that generalize values across states and actions, as used in early
work on deep reinforcement learning,6 as well as more recently, in work on re-

6 Tesauro (1992) and Riedmiller (2005)
inforcement learning for large discrete action spaces.7 �ese networks take a

7 Dulac-Arnold et al. (2015), Chandak et al.
(2019), and Tennenholtz and Mannor (2019)

feature representation of a state-action pair, ϕ(s, a), as input, and output the
corresponding state-action-value estimate q̂(s, a). In a given state s, an agent
that uses the greedy policy, and thus requires value estimates for all actions inA(s), has to make ∣A(s)∣ forward passes through the network.

6.2 effort-quality trade-off in the space of policies

We are interested in value-based policies that produce useful behavior while
requiring less computational e�ort than the greedy policy in the sense that these
other policies require fewer than ∣A(s)∣ action-value computations (or look-
ups) before selecting an action.
We now de�ne more formally the notions of e�ort required to choose an

action and quality of the chosen action of a policy π with respect to an action-
value function q in a given state s.

De�nition 1 (E�ort of a policy). �e e�ort e(π, s) denotes the random
variable that describes the number of action-values that the policy π com-
putes beforemaking a decision.�e expected e�ort of the policy π in a state
s is the expected value of e(π, s) and will be denoted by

f (π, s) = E[e(π, s)].
For instance, the random policy, denoted by πr , requires an expected e�ort of
f (πr , s) = 0 because no action value has to be computed to make a decision.
�e greedy policy π∗ requires an expected e�ort of f (π∗ , s) = ∣A(s)∣ because all
action values have to be computed to determine the value-maximizing action.

100

De�nition 2 (Quality of a policy). �e quality of a policy π with respect
to a value function q in a state s is the expected q-value of the selected
action and will be denoted by

u(π, s) = ∫A(s) q(a∣s)dπ(a∣s).

For instance, the random policy yields a quality of u(πr , s) = E[q(a∣s)] and the
greedy policy yields a quality of u(π∗ , s) = maxa∈A(s) q(a∣s).
To simplify notation, we will sometimes just write f for expected e�ort or

u for quality,8 without explicitly conditioning on the state or policy when the 8 It is somewhat unfortunate that the symbol
for quality will be denoted by the letter u and
not by the letter q (as in quality). In the re-
inforcement learning literature, the letter q is
already “reserved” to denote the action-value
function. You can think of “u” as in utility for
a mnemonic aid.

context is unambiguous.

▸ Trading off effort against quality. �e greedy policy yields maxi-
mum quality but also requires high e�ort. One policy that requires zero e�ort
is the random policy. However, the quality of uniformly random behavior is
generally too low to be useful.
One näıve way of obtaining a policy with intermediate e�ort is to use the ε-

greedy policy, which selects a value-maximizing or a random action with prob-
abilities of ε and 1 − ε, respectively. �e resulting interpolation is linear in the
sense that a reduction in e�ort is proportionallymatched by a reduction in qual-
ity. For instance, if ε = 0.5, the ε-greedy policy requires, on average, half of the
greedy policy’s e�ort. However, the expected quality of the chosen action is only
half-way in between the quality of a greedily chosen action and a randomly cho-
sen action.9 9 �e expected quality of an ε-greedy policy is

given by u(πr)+ ε[u(π∗)− u(πr)]. See also
Figure 6.3d.

In the following section I will de�ne the ξ-satis�cing policy, which, like the
ε-greedy policy, provides an interpolation of the greedy policy and the random
policy. Unlike the ε-greedy policy, the satis�cing policy navigates the e�ort-
quality tradeo� on a non-linear trajectory, allowing the agent to bene�t from a
large reduction of e�ort by giving up only a small amount of quality, or in some
cases, by not giving up any quality at all.

6.3 ξ-satisficing policies : low-effort decision making

We now de�ne the value-based ξ-satis�cing policy, where ξ ∈ R denotes the
aspiration level.

De�nition 3 (ξ-satis�cing policy). �e ξ-satis�cing policywith respect to
a state-action value function q, denoted by π̃(s, ξ, q), is to consider actions
inA(s) sequentially according to a proposal distribution d, and to accept
the �rst satisfactory action. An action a is satisfactory if its value, q(s, a),
is larger than the aspiration level ξ. If no action in A(s) is found to be
satisfactory, the policy is to choose a value-maximizing action.

satisficing policies in markov decision processes 101

An algorithmic description of the ξ-satis�cing policy is provided in Algo-
rithm 8. In the remainder of this chapter, we assume that d is the uniform ran-
dom distribution without replacement. �at is, actions are simply considered
in random order, and no action is considered more than once.
In the context of a single decision, expected e�ort and quality of the satis-

�cing policy both depend on the value of the aspiration level ξ relative to the
distribution of q-values in the current state s, given by q(a∣s).�is relationship
is summarized in Figures 6.1 and described in more detail next.

greedyrandom
<latexit sha1_base64="SUK45k4GJCMs/dg4DoFNFZFleTo=">AAACN3icdVDLSgMxFE3qq9a3LgUJVsFVmanWtruCGzeFSq0W2qFk0kwbmkmGJCPWoZ/gVr/FT3HlTtz6B2a0ghU9EDic+8i5x48408ZxnmFmbn5hcSm7nFtZXVvf2NzavtIyVoS2iORStX2sKWeCtgwznLYjRXHoc3rtj87S+vUNVZpJcWnGEfVCPBAsYAQbKzW7t6y3mXcKjnNarJZRSsqlYiUl7nGp6iDXKinyYIpGbwvudfuSxCEVhnCsdcd1IuMlWBlGOJ3kurGmESYjPKAdSwUOqfaST68TdGiVPgqksk8Y9Kn+nEhwqPU49G1niM1Q/66l4l+1TmyCipcwEcWGCvL1URBzZCRKD0d9pigxfGwJJopZr4gMscLE2HhmNqW7eeAldSZsRg0lJ7lD9NNG2hDhOzlzalIXTetb8olN9Ds29D+5KhbcUsG5OMnXDqbZZsEu2AdHwAVlUAPnoAFagIABuAcP4BE+wRf4Ct++WjNwOrMDZgDfPwBPn6zO</latexit>

ξ

<latexit sha1_base64="5fRcXF3LwrGoPKAtyGiARTvm1ZY=">AAACPHicdVDLSgMxFM3UV62vVpeCBGvBVZm+aJcFN24KFe0D2qFk0kwbmknGJCPUoT/hVr/F/3DvTty6NtNWaEUPBA7nPnLucQNGlbbtNyuxsbm1vZPcTe3tHxwepTPHbSVCiUkLCyZk10WKMMpJS1PNSDeQBPkuIx13chXXOw9EKir4nZ4GxPHRiFOPYqSN1L0fRH2f8tkgnbXzpWKlVq7CBSn9kHIJFvL2HFmwRHOQsc76Q4FDn3CNGVKqV7AD7URIaooZmaX6oSIBwhM0Ij1DOfKJcqK54RnMGWUIPSHN4xrO1dWJCPlKTX3XdPpIj9XvWiz+VeuF2qs5EeVBqAnHi4+8kEEtYHw9HFJJsGZTQxCW1HiFeIwkwtpktLYp3s08J2pQboJqSjFL5eCqjbghQI9i7dSowW+Nb8HiRH9ig/+TdjFfqOTtm3K2frHMNglOwTm4BAVQBXVwDZqgBTBg4Ak8gxfr1Xq3PqzPRWvCWs6cgDVYX98kJq89</latexit>qmin
<latexit sha1_base64="Zmm38ke+yjDgoIeFQf1IlB2+RmA=">AAACPHicdVDLSgMxFM34rPXV6lKQYC24Gmbail0W3LgpVLS20A4lk2Y0mEnGJCPWYX7CrX6L/+Henbh1baYPsKIHAodzHzn3+BGjSjvOm7WwuLS8sppby69vbG5tF4o7V0rEEpM2FkzIro8UYZSTtqaakW4kCQp9Rjr+7WlW79wTqajgl3oUES9E15wGFCNtpO7dIOmH6CEdFEqOXa0c12sncEKqM1KrQtd2xiiBKVqDorXfHwoch4RrzJBSPdeJtJcgqSlmJM33Y0UihG/RNekZylFIlJeMDaewbJQhDIQ0j2s4Vn9OJChUahT6pjNE+kb9rmXiX7VerIO6l1AexZpwPPkoiBnUAmbXwyGVBGs2MgRhSY1XiG+QRFibjOY2ZbtZ4CVNyk1QLSnSfBn+tJE1ROhRzJ2aNPmF8S1YlugsNvg/uarY7rHtnNdKjcNptjmwBw7AEXDBCWiAM9ACbYABA0/gGbxYr9a79WF9TloXrOnMLpiD9fUNJ8KvPw==</latexit>qmax

“truly satisficing”

pdf of q(a|s)

<latexit sha1_base64="fEk3oPuvnMZa5IKzpNC9H0Bzpho=">AAACTHicdVBdS8MwFE2nTp1fU8EXQYJTmCCjnc7pm+CLL8JE54S1jDRLZzBNapKKs/bP+Kq/xXf/h28imOqETfRC4HDOuTf3Hj9iVGnbfrVyY+MT+cmp6cLM7Nz8QnFx6UKJWGLSxIIJeekjRRjlpKmpZuQykgSFPiMt//oo01u3RCoq+LnuR8QLUY/TgGKkDdUprriasi5J3IimZbUN3Tu6DW+2OsWSXbHtvepBHWagXqvuZ8DZqR3Y0DFMViUwqEZn0VpzuwLHIeEaM6RU27Ej7SVIaooZSQturEiE8DXqkbaBHIVEecnXASncNEwXBkKaxzX8Yoc7EhQq1Q994wyRvlK/tYz8S2vHOtj3EsqjWBOOvz8KYga1gFkasEslwZr1DUBYUrMrxFdIIqxNZiOTstks8JITyk1wDSnSwiYcXiMzROhejJyanPAzs7dgqUn0Jzb4P7ioVpxaxT7dLR1uDLKdAqtgHZSBA+rgEByDBmgCDB7AI3gCz9aL9Wa9Wx/f1pw16FkGI5XLfwKPv7Mm</latexit>

π̃(s, ξ, q)
Nature of

satisficing policy

<latexit sha1_base64="azmEp+tsBo/mowE1BVqGFzuPGGQ=">AAACPHicdVDLSgMxFL3js9ZndSlIsAh1U6a2pV0W3LgRKtoH1EEyaaYGM8mYZIQ69ifc6rf4H+7diVvXZtoKVvRA4HDuI+ceP+JMG9d9debmFxaXljMr2dW19Y3Nrdx2W8tYEdoikkvV9bGmnAnaMsxw2o0UxaHPace/OU7rnTuqNJPiwgwj6oV4IFjACDZW6t4WMHpA+vBqK+8Wy0fVeqWGJqT8TSplVCq6Y+RhiuZVztm77EsSh1QYwrHWvZIbGS/ByjDC6Sh7GWsaYXKDB7RnqcAh1V4yNjxCB1bpo0Aq+4RBY/XnRIJDrYehbztDbK7171oq/lXrxSaoewkTUWyoIJOPgpgjI1F6PeozRYnhQ0swUcx6ReQaK0yMzWhmU7qbB15yyoQNqqnkKHuAftpIGyJ8L2dOTU7FufUt+cgm+h0b+p+0j4qlatE9q+Qb+9NsM7AL+1CAEtSgASfQhBYQ4PAIT/DsvDhvzrvzMWmdc6YzOzAD5/MLJ1yuJQ==</latexit>

q(a�s)

Figure 6.1: Nature of the ξ-satis�cing policy
as a function of the aspiration level ξ in rela-
tion to the distribution of action-values in the
current states, given by q(a∣s).

�ere are two extreme cases. Let qmax ∶= maxa q(a∣s), then for ξ > qmax,
no action is ever satisfactory and the satis�cing policy thus “falls back” to the
greedy policy.10 By contrast, let qmin ∶= mina q(a∣s), then for ξ ≤ qmin, the 10 If the algorithm keeps track of the currently

highest q-value while searching for a satisfac-
tory action, the greedy action can be deter-
mined immediately a�er consideration of all
actions, thus not requiring any further com-
putation.

�rst (randomly chosen) action is always satisfactory and the satis�cing policy
thus yields the same quality as the random policy, while requiring one action
evaluation.
In between these two extreme cases, a lower aspiration level generally leads

to a higher number of actions deemed satisfactory, which reduces expected
e�ort because fewer actions have to be evaluated until a satisfactory action is
found. However, a lower aspiration also decreases the expected quality of the
chosen action because more low-quality actions become satisfactory and could
thus potentially be selected. Both e�ects are indicated in Figure 6.2.

Aspiration
level

Expected
effort

Action
values

<latexit sha1_base64="5MGVAjzb1qGpdzq1VJaZTDi3Yc4=">AAACN3icdVDLSgMxFL3j2/qquhQkWARXZaZqq7uCGzeFSq0K7SCZNFNDM8mQZMQ69BPc6rf4Ka7ciVv/wExboRU9EDic+8i5J4g508Z135yZ2bn5hcWl5dzK6tr6Rn5z60rLRBHaJJJLdRNgTTkTtGmY4fQmVhRHAafXQe8sq1/fU6WZFJemH1M/wl3BQkawsVKj/cBu8wW36Lrl0mkFZaRyXDrJiHd4fOoizyoZCjBG/XbT2W13JEkiKgzhWOuW58bGT7EyjHA6yLUTTWNMerhLW5YKHFHtp0OvA7RvlQ4KpbJPGDRUJydSHGndjwLbGWFzp3/XMvGvWisx4YmfMhEnhgoy+ihMODISZYejDlOUGN63BBPFrFdE7rDCxNh4pjZlu3nopzUmbEZ1JQe5fTRpI2uI8aOcOjWtiYb1LfnAJvoTG/qfXJWKXrl4dHFUqKJxtkuwA3twAB5UoArnUIcmEOjCEzzDi/PqvDsfzueodcYZz2zDFJyvb1AHrM8=</latexit>

ξ
<latexit sha1_base64="lnXARxamwgABdxpSQezSVrr2qZA=">AAACOnicdVDLSgMxFM34rPXV6lKQYCnopszUPncFN24KFW0ttINk0kyNzSRjkhHq2H9wq9/ij7h1J279ADNawYoeCBzOfeTc44WMKm3bz9bc/MLi0nJqJb26tr6xmcludZSIJCZtLJiQXQ8pwignbU01I91QEhR4jJx7o6Okfn5DpKKCn+lxSNwADTn1KUbaSJ3rfXSnDi4yObtg25VivQoTUi0XawlxDst1GzpGSZADU7QustZufyBwFBCuMUNK9Rw71G6MpKaYkUm6HykSIjxCQ9IzlKOAKDf+tDuBeaMMoC+keVzDT/XnRIwCpcaBZzoDpC/V71oi/lXrRdqvuTHlYaQJx18f+RGDWsDkdjigkmDNxoYgLKnxCvElkghrk9DMpmQ38924SbmJqSXFJJ2HP20kDSG6FTOnxk1+anwLNjGJfscG/yedYsGpFEonpVwDTrNNgR2wB/aBA6qgAY5BC7QBBlfgHjyAR+vJerFerbev1jlrOrMNZmC9fwBG4q3C</latexit>

q(a�s)

Quality
<latexit sha1_base64="rrqj3Ik/lfR7mY+GpOP/Q+un+BU=">AAACNXicdVDLSgMxFL3js9a3LgUJloKrMlNtq7uCGzeFFm0V6lAyaUaDmWRIMkId+gVu9Vv8FhfuxK2/YKat0IoeCBzOfeTcE8ScaeO6b87c/MLi0nJuJb+6tr6xubW909EyUYS2ieRSXQdYU84EbRtmOL2OFcVRwOlVcH+W1a8eqNJMiksziKkf4VvBQkawsVIr6W0V3JLrVsunNZSRWqV8khHvqHLqIs8qGQowQbO37ezf9CVJIioM4VjrrufGxk+xMoxwOszfJJrGmNzjW9q1VOCIaj8dOR2iolX6KJTKPmHQSJ2eSHGk9SAKbGeEzZ3+XcvEv2rdxIQnfspEnBgqyPijMOHISJSdjfpMUWL4wBJMFLNeEbnDChNjw5nZlO3moZ82mLAJNZUc5oto2kbWEONHOXNq2hAX1rfkQ5voT2zof9Ipl7xq6bh1XKijSbY52IMDOAQPalCHc2hCGwhQeIJneHFenXfnw/kct845k5ldmIHz9Q2ZDavz</latexit>u

(+)
(+)

<latexit sha1_base64="HujDToOP2jJeExziNKUliaCDplk=">AAACNXicdVDLSgMxFM3UV62vVpeCBEvBVZmpfe4KbtwUWrStUIeSSTMamkmGJCPUoV/gVr/Fb3HhTtz6C2baCq3ogcDh3EfOPV7IqNK2/Wal1tY3NrfS25md3b39g2zusKdEJDHpYsGEvPGQIoxy0tVUM3ITSoICj5G+N75I6v0HIhUV/FpPQuIG6I5Tn2KkjdTxh9m8XbTtaqlRgwmpVUr1hDjnlYYNHaMkyIMF2sOcdXI7EjgKCNeYIaUGjh1qN0ZSU8zINHMbKRIiPEZ3ZGAoRwFRbjxzOoUFo4ygL6R5XMOZujwRo0CpSeCZzgDpe/W7loh/1QaR9utuTHkYacLx/CM/YlALmJwNR1QSrNnEEIQlNV4hvkcSYW3CWdmU7Ga+G7coNwm1pZhmCnDZRtIQokexcmrc4lfGt2BTk+hPbPB/0isVnWqx3Cnnm3CRbRocg1NwBhxQA01wCdqgCzAg4Ak8gxfr1Xq3PqzPeWvKWswcgRVYX999zqvk</latexit>

f

Figure 6.2: In�uence of the aspiration level
and the distribution of action values on qual-
ity and e�ort of the satis�cing policy.�e (+)
sign on an arrow mean that the two variables
connected by that arrow are positively corre-
lated.

In the remainder of this section, we aim to characterize the resulting trade-
o� in more detail by analyzing the relative magnitudes of both e�ects. Broadly
speaking, we would like to know how large the reduction in expected e�ort is
for a small reduction in quality (relative to the greedy policy). However, the
desired e�ect sizes depend not only on the aspiration level chosen by the agent
but also on the shape of the distribution q(a∣s). �is distribution is generally
not known to the agent and can therefore not be used to directly calculate a
suitable aspiration level.

102

Algorithm 8 π̃(s, ξ, q) ∶ a ξ-satis�cing policy with respect to q(s, a).
Output: a ∈ A(s) // action
Input:
ξ ∈ R // policy aspiration level
d ∶ A→ A // action-sample distribution, e.g., uniform random
s ∈ S // state on which the policy is computed
q(s, a) ∶ S ×A→ R // action-value function
ε ∈ R // exploration parameter in case of non-satisfaction

B = A(s) // set of actions to be considered
while B ≠ ∅ do
sample a from B according to dB ← B ∖ {a} // remove action from consideration set
if q(s, a) ≥ ξ then
return a // the procedure stops immediately and returns a

end if
end while
// No satis�cing action found
return ε-greedy action

6.3.1 Characterizing the e�ort-quality tradeo� of satis�cing using example distributions
for q(a∣s)
Here we analyze quality and e�ort for three di�erent example distributions of
q(a∣s), shown in Figure 6.3a. �ese distributions correspond to di�erent de-
grees of suitability of the satis�cing policy to the decision environment, allow-
ing us to study the satis�cing policy in more or less “favorable” environments.
Speci�cally, the three distributions are Beta(α, β) distributions for di�erent

values of α and β. All distributions have the same minimum and maximum
action values (qmin = 0 and qmax = 1). �ey di�er in how the action-values are
distributed between the two extremes. In a decision environment where action
values follow a Beta(3, 1) distribution (purple), most actions have high value
and very few actions are of low value. Intuitively, this distribution is well suited
for a satis�cing agent because a random search can quickly �nd a high-quality
action. By contrast, the Beta(1, 3) distribution (green) corresponds to a situ-
ation in which most actions are of low value and very few actions are of high
value; we expect that many actions have to be evaluated until a high-quality
action is found. �e Beta(2, 2) distribution (orange) corresponds to an inter-
mediate case. Or to summarize: purple is “favorable”; orange is “neutral”; and
green is “unfavorable”.
We use these three decision environments for our analysis as follows. Panels

b to d of Figure 6.3 (each of which will be discussed in detail further below)
show various quantities related to the e�ort-quality trade-o� of the ξ-satis�cing
policy, as a function of the aspiration level ξ, in the three decision environments

satisficing policies in markov decision processes 103

0

1

2

3

0 0.25 0.5 0.75 1
q(a∣s)

Pr
ob
ab
ili
ty
de
ns
ity
fu
nc
tio
n

Beta(1, 3)

Beta(2, 2)

Beta(3, 1)

a

0

25

50

75

100

0 0.25 0.5 0.75 1
Aspiration level (ξ)

Ex
pe
ct
ed
e�
or
t(

f)

b

ur

25%

50%

75%

u∗

0 0.25 0.5 0.75 1
Aspiration level (ξ)

Q
ua
lit
y
(u
)

c
ξ > 1ξ = 1

ξ = 0

ε-g
ree
dy

ur

25%

50%

75%

u∗

0 25 50 75 100
Expected e�ort (f)

Q
ua
lit
y
(u
)

d

Figure 6.3: a, Probability density functions
for various Beta(α, β) distributions. All solid
lines in panels b to d show empirical means
calculated across 1000 action sets, each con-
sisting of ∣A∣ = 100 actions whose values
were randomly drawn according to the dis-
tributions shown in panel a (matching color-
coding).
b, Expected e�ort f as a function of the aspi-
ration level ξ.
c, Quality of the satis�cing policy as a func-
tion of the aspiration level ξ. �e quality val-
ues (y-axis) are scaled to the range [ur , u∗]
for each distribution of q(a∣s), where ur and
u∗ are the qualities of the random and the
greedy policy, respectively.
d, E�ort-quality tradeo�s for the ξ-satis�cing
policy (solid lines) as the policy parameter is
varied from ξ = 0 () to ξ = 1 (�).�e colored
diamonds◆,◆, and◆ correspond to the as-
piration levels that yield 95% of the quality of
the greedy policy.�e �gure also shows the ε-
greedy policy (dotted grey line), as the explo-
ration parameter is varied from ε = 1 (, ran-
dom policy) to ε = 0 (▽, greedy policy). �e
point ▽ also corresponds to the ξ-satis�cing
policy for ξ > 1.

just described. Each �gure shows three solid colored lines, which correspond
to the three distributions of q(a∣s) shown in Panel a, as indicated by matching
colors.

▸ Effort of satisficing. Figure 6.3b shows the expected e�ort f of the satis-
�cing policy as a function of the policy aspiration level ξ. Ideally, a policy is as
close as possible to the bottom-right corner. In that regard, the Beta(3, 1) distri-
bution (blue) is preferred to the Beta(2, 2) distribution (orange), which itself is
preferred to the Beta(1, 3) distribution (green), con�rming our earlier intuition
about which distribution of q-values is favorable for the satis�cing policy.

▸ Quality of satisficing. Figure 6.3c shows u as a function of ξ. Ideally, we
would like to reduce the aspiration level as much as possible (to reduce e�ort)
while maintaining a high expected quality. �at is, in this �gure, the top-le�
corner is best. Note that the preference order between value distributions es-
tablished in the previous paragraphs is reversed here: for a �xed aspiration level
ξ, the Beta(1, 3) distribution (green) maintains the highest quality whereas the
Beta(3, 1) distribution (blue) yields the lowest quality.

104

▸ Effort-quality trade-off for satisficing. We now combine the two
individual e�ects discussed so far to obtain a more complete picture on how
the satis�cing policy trades o� e�ort and quality. Figure 6.3d shows expected
e�ort (x-axis) and quality (y-axis) of the ξ-satis�cing policy as the aspiration
level is varied from ξ = 0 () to ξ = 1 (�). A single point on any of these lines
thus corresponds to the e�ort-quality tradeo� for one speci�c aspiration level.
Ideally, a policy is as close as possible to the top-le� corner.
To provide a baseline, the plot also shows the trade-o�s obtained by the ε-

greedy policy, as the exploration parameter is varied from ε = 1 (, random
policy) to ε = 0 (▽, greedy policy).

�e three colored diamonds (◆, ◆, and ◆) show the satis�cing policies that
yield 95% of the quality of the greedy (relative to the random policy). To reach
this level of quality, the satis�cing policy requires 40% of the e�ort required
by the greedy policy in the case of the unfavorable Beta(1, 3) distribution of q-
values. In the case of the favorable Beta(3, 1) distribution, the satis�cing policy
requires only 10% of the e�ort to yield 95% of the quality that would be obtained
by the greedy policy.

�e e�ort-quality trade-o�s obtained from using the satis�cing policy generally
seem useful in the sense that a relatively small reduction in quality led to a rela-
tively large reduction in e�ort, even for the least favorable distribution of action
values considered here. And yet it remains di�cult to derive a general principle
for setting aspiration levels from this analysis alone for the following reasons.
First, the agent usually does not knowwhich type of value distribution q(s∣a) is
to be expected in the current state. Second, we analyzed three exemplary distri-
butions which are not necessarily representative of action-value distributions
found in the real world. Finally, the usefulness of a trade-o� always depends
on the relative importance given to e�ort and quality, and is thus ultimately
application-dependent.

�ere is, however, one point in Figure 6.3d that represents a situation in
which the ξ-satis�cing policy outperforms the greedy policy, regardless of the
relative importance given to quality and e�ort, and for all distributions of q(a∣s)
thatwere considered: when ξ = 1 (indicated by� in Figure 6.3d), the ξ-satis�cing
policy yielded maximum quality but required only half of the expected e�ort
that is required by the greedy policy. I next characterize this situation more
formally.

6.3.2 Satis�cing can be a Pareto improvement on the greedy policy.

In welfare economics, a Pareto improvement is a change to a system that im-
proves the (economic) well-being of at least one person without harming any
other person’s well-being in the same system.11 In the context of the e�ort- 11 �e concept is named a�er economist Vil-

fredo Pareto (see, for example, Mas-Colell et
al., 1995, Chap. 16).

quality trade-o� discussed here, we say a policy π1 is a Pareto improvement
on a policy π2, if π1 requires strictly less e�ort or yields strictly higher quality

satisficing policies in markov decision processes 105

than π2 while being at least as good in the other dimension.
Ideally we would like to prove that the ξ-satis�cing policy can be a Pareto

improvement on the greedy policy for any action-value distribution q(a∣s). To
this aim, I �rst introduce the number of satisfactory actions, denoted by ñ, as an
intermediate variable in the analysis of e�ort, as shown in Figure 6.4.�is allows
us to prove Lemma 1, which quanti�es the satis�cing policy’s expected e�ort f
as a function of ñ.�is lemma then allows us to prove the Pareto improvement
for a single decision (see�eorem 2) as well as an upper bound on the expected
e�ort required by a satis�cing agent when satis�cing is used in each decision of
an MDP (see�eorem 3). Moreover, the lemma provides intuition on why the
satis�cing policy’s e�ort-quality trade-o� shows the non-linearity observed in
the previous section.

Aspiration
level

Expected
effort

Action
values

Quality

<latexit sha1_base64="74IIQQPOKdNLsElIfPEvn2cqe3Y=">AAACNXicdVBbSwJBGJ21m9lN6zGIIRF6kjVM7U3opRdBKS+gi8yOszo4O7PMzAa2+At6rd/Sb+mht+i1v9CsbqBRBwYO57vM+Y4bMKq0bb9ZqY3Nre2d9G5mb//g8CibO+4oEUpM2lgwIXsuUoRRTtqaakZ6gSTIdxnputObuN59IFJRwe/1LCCOj8acehQjbaRWOMzm7eJVzb6uleGSVKoJqVZgqWgvkAcJmsOcdTYYCRz6hGvMkFL9kh1oJ0JSU8zIPDMIFQkQnqIx6RvKkU+UEy2czmHBKCPoCWke13Chrk5EyFdq5rum00d6on7XYvGvWj/UXs2JKA9CTThefuSFDGoB47PhiEqCNZsZgrCkxivEEyQR1iactU3xbuY5UYNyk1BTinmmAFdtxA0BehRrp0YNfmd8CzY3if7EBv8nnctiqVIst8r5OkyyTYNTcA4uQAlUQR3cgiZoAwwIeALP4MV6td6tD+tz2ZqykpkTsAbr6xve7Kwb</latexit>u

(+)

Number of
satisfactory

actions

<latexit sha1_base64="4E5Wtp2n9mWvllEO+iAgKP+pFwc=">AAACOnicdVDLSgMxFM34rPVVdSlIsAh1M0yltnUnuHFTqGhroQ4lk2ZqbCYZk4xQx/kHt/ot/ohbd+LWDzDTjmBFDwQO5z5y7vFCRpV2nFdrZnZufmExt5RfXlldWy9sbLaViCQmLSyYkB0PKcIoJy1NNSOdUBIUeIxcesOTtH55R6Sigl/oUUjcAA049SlG2kjt2xJ6UPu9QtGxD+vOUb0CJ6Ray0itCsu2M0YRZGj2Nqydq77AUUC4xgwp1S07oXZjJDXFjCT5q0iREOEhGpCuoRwFRLnx2G4C94zSh76Q5nENx+rPiRgFSo0Cz3QGSF+r37VU/KvWjbRfd2PKw0gTjicf+RGDWsD0dtinkmDNRoYgLKnxCvE1kghrk9DUpnQ38924QbmJqSlFkt+DP22kDSG6F1Onxg1+bnwLlphEv2OD/5P2gV2u2pWzSvEYZtnmwDbYBSVQBjVwDE5BE7QABjfgETyBZ+vFerPerY9J64yVzWyBKVifX4zBreo=</latexit>

q(a�s)<latexit sha1_base64="8A5/TnwrgJd1MR/utIOInXiH7R4=">AAACN3icdVDLSgMxFM34rPXV6lKQYCm4KlOpbd0V3LgpVGof0A4lk2ba0EwyJBmxDv0Et/otfoord+LWPzDTjtCKHggczn3k3OMGjCpt22/W2vrG5tZ2aie9u7d/cJjJHrWVCCUmLSyYkF0XKcIoJy1NNSPdQBLku4x03Ml1XO/cE6mo4Hd6GhDHRyNOPYqRNlKz/0AHmZxduKzaV9USXJByJSGVMiwW7DlyIEFjkLVO+0OBQ59wjRlSqle0A+1ESGqKGZml+6EiAcITNCI9QznyiXKiudcZzBtlCD0hzeMaztXliQj5Sk1913T6SI/V71os/lXrhdqrOhHlQagJx4uPvJBBLWB8OBxSSbBmU0MQltR4hXiMJMLaxLOyKd7NPCeqU24yakgxS+fhso24IUCPYuXUqM6bxrdgM5PoT2zwf9K+KBTLhdJtKVeDSbYpcALOwDkoggqogRvQAC2AwQg8gWfwYr1a79aH9bloXbOSmWOwAuvrG5XmrPc=</latexit>

ξ

 (−)

<latexit sha1_base64="OytLcCefVtUAd54VHQhyXuB8XWc=">AAACN3icdVDLSgMxFM3Ud321uhQkWAq6sMzU1tqd4MaNUKmtQjtIJs20oZlkSDJCHeYT3Oq3+Cmu3Ilb/8BMW6EVPRA4nPvIuccLGVXatt+szMLi0vLK6lp2fWNzazuX32krEUlMWlgwIe88pAijnLQ01YzchZKgwGPk1htepPXbByIVFfxGj0LiBqjPqU8x0kZqHh4f3ecKdsm2T8v1GkxJrVo+S4lzUq3b0DFKigKYonGft/a7PYGjgHCNGVKq49ihdmMkNcWMJNlupEiI8BD1ScdQjgKi3HjsNYFFo/SgL6R5XMOxOjsRo0CpUeCZzgDpgfpdS8W/ap1I+2duTHkYacLx5CM/YlALmB4Oe1QSrNnIEIQlNV4hHiCJsDbxzG1KdzPfja8oNxk1pEiyRThrI20I0aOYOzW+4k3jW7DEJPoTG/yftMslp1KqX1cK53Ca7SrYAwfgEDigBs7BJWiAFsCgD57AM3ixXq1368P6nLRmrOnMLpiD9fUN9TmsEw==</latexit>

(−)

<latexit sha1_base64="V6tzchWPtQGKK9behgu2odZUBv8=">AAACN3icdVDdSgJBGJ21P7M/rcsghkSoi2RXLPVO6KYbwTA1sEVmx1kbnJ1ZZmYDW3yEbutZepSuuotue4Nm1UCjDgwczvcz5zteyKjStv1mpVZW19Y30puZre2d3b1sbr+jRCQxaWPBhLz1kCKMctLWVDNyG0qCAo+Rrje6TOrdByIVFfxGj0PiBmjIqU8x0kZqnZyd9rN5u1ixL2rnNkxIxa6W4ExxKtAp2lPkwRzNfs46uhsIHAWEa8yQUj3HDrUbI6kpZmSSuYsUCREeoSHpGcpRQJQbT71OYMEoA+gLaR7XcKouTsQoUGoceKYzQPpe/a4l4l+1XqT9qhtTHkaacDz7yI8Y1AImh8MBlQRrNjYEYUmNV4jvkURYm3iWNiW7me/GDcpNRk0pJpkCXLSRNIToUSydGjd4y/gWbGIS/YkN/k86paJTLtauy/k6nGebBofgGJwAB1RAHVyBJmgDDIbgCTyDF+vVerc+rM9Za8qazxyAJVhf3xL4rCQ=</latexit>

ñ

<latexit sha1_base64="iu2t8xq3jcAdCRCcZG5yHNPfljI=">AAACPXicbVDLSgMxFM3UV62vVpeCBEvBVZmRgroruHFTqGgf0g4lk8m0oZlkSDJCHfoVbvVb/A4/wJ24dWumnUUfHggczn3k3ONFjCpt259WbmNza3snv1vY2z84PCqWjttKxBKTFhZMyK6HFGGUk5ammpFuJAkKPUY63vg2rXeeiVRU8Ec9iYgboiGnAcVIG+mprynzScKng2LZrtozwHXiZKQMMjQHJeus7wsch4RrzJBSPceOtJsgqSlmZFrox4pECI/RkPQM5Sgkyk1mjqewYhQfBkKaxzWcqYsTCQqVmoSe6QyRHqnVWir+V+vFOrh2E8qjWBOO5x8FMYNawPR86FNJsGYTQxCW1HiFeIQkwtqEtLQp3c0CN2lQbpJqSjEtVOCijbQhQi9i6dSkwR+Mb8HSRJ3V/NZJ+7Lq1Ko397VyHWbZ5sEpOAcXwAFXoA7uQBO0AAYheAVv4N36sL6sb+tn3pqzspkTsATr9w+Coq9l</latexit>

<latexit sha1_base64="HujDToOP2jJeExziNKUliaCDplk=">AAACNXicdVDLSgMxFM3UV62vVpeCBEvBVZmpfe4KbtwUWrStUIeSSTMamkmGJCPUoV/gVr/Fb3HhTtz6C2baCq3ogcDh3EfOPV7IqNK2/Wal1tY3NrfS25md3b39g2zusKdEJDHpYsGEvPGQIoxy0tVUM3ITSoICj5G+N75I6v0HIhUV/FpPQuIG6I5Tn2KkjdTxh9m8XbTtaqlRgwmpVUr1hDjnlYYNHaMkyIMF2sOcdXI7EjgKCNeYIaUGjh1qN0ZSU8zINHMbKRIiPEZ3ZGAoRwFRbjxzOoUFo4ygL6R5XMOZujwRo0CpSeCZzgDpe/W7loh/1QaR9utuTHkYacLx/CM/YlALmJwNR1QSrNnEEIQlNV4hvkcSYW3CWdmU7Ga+G7coNwm1pZhmCnDZRtIQokexcmrc4lfGt2BTk+hPbPB/0isVnWqx3Cnnm3CRbRocg1NwBhxQA01wCdqgCzAg4Ak8gxfr1Xq3PqzPeWvKWswcgRVYX999zqvk</latexit>

f

Figure 6.4: Analysis of e�ort using the num-
ber of satisfactory actions, ñ, as intermedi-
ary variable. �e (+) or (−) sign on an ar-
rowmean that the two variables connected by
that arrow correlate positively or negatively,
respectively. Compare to Figure 6.2.

▸ Effort as a function of the number of satisfactory actions. Given
a state s, an aspiration level ξ, and a distribution of q-values q(a∣s), the num-
ber of satisfactory actions ñ(s, ξ, q(a∣s)) = ∣{a ∈ A(s)∣q(s, a) ≥ ξ}∣ is given by
the number of actions that can possibly be selected by the satis�cing policy in
this situation. To simplify notation, we usually write just ñ when the decision
context is unambiguous.
Next we quantify the expected e�ort of the ξ-satis�cing policy as a function

of the number of satisfactory actions, ñ, when the action proposal distribution
d is uniformly random.

Lemma 1 (Expected e�ort of satis�cing). For ñ ∈ [1, ∣A∣] satisfactory ac-
tions, the expected e�ort of the satis�cing policy is given by

f (ñ) = ∣A∣ + 1
ñ + 1 . (6.1)

�e expected e�ort of the satis�cing policy decreases at a quadratically
decreasing rate as ñ increases. Speci�cally, for ñ ∈ [2, ∣A∣], the di�erence
in expected e�ort, as the number of satisfactory actions is increased from
ñ − 1 to ñ, is given by

δñ ∶= f (ñ) − f (ñ − 1) = − ∣A∣ + 1
ñ2 + ñ

. (6.2)

Proof of Lemma 1.
To prove Equation 6.1, we reformulate the satis�cing policy as an “urn
problem” from probability theory. Consider an urn that contains ∣A∣ balls
(corresponding to available actions), of which ñ balls are red (satisfactory
actions) and the remaining balls are blue.�e expected e�ort f (ñ) is given
by the expected value of the following random variable, denoted by X.�e
random variable X is the number of draws from the urn until the �rst red
ball is drawn, if balls are drawn from the urn randomly without replace-

106

ment (because in satis�cing, every action is evaluated at most once). �is
case has been treated in Ahlgren (2014), which provides the desired ex-
pression for f (ñ).

�e expression for the di�erence in expected e�ort δñ (Equation 6.2) is
obtained by plugging in the expected values from Equation 6.1 and apply-
ing simple algebra.

δñ ∶= E[X∣ñ] −E[X∣ñ − 1]
= ∣A∣ + 1

ñ + 1 − ∣A∣ + 1
ñ

= ñ(∣A∣ + 1)
ñ(ñ + 1) − (ñ + 1)(∣A∣ + 1)

ñ(ñ + 1) .

= ñ(∣A∣ + 1) − (ñ + 1)(∣A∣ + 1)
ñ(ñ + 1) .

= − ∣A∣ + 1
ñ2 + ñ

.

0

1
4 ∣A∣

1
2 ∣A∣

3
4 ∣A∣

∣A∣

0 1
4 ∣A∣ 1

2 ∣A∣ 3
4 ∣A∣ ∣A∣

Satisfactory actions (ñ)

Ex
pe
ct
ed
e�
or
t(

f)

∣A∣ = 10
∣A∣ = 100
∣A∣ = 1000

Figure 6.5: Expected number of action evalua-
tions for the satis�cing policy, f (ñ), as a func-
tion of the number of satisfactory actions in
the action set, ñ, for di�erent action set sizes
∣A∣. Both axes are scaled relative to the total
number actions ∣A∣ in each case.

Figure 6.5 illustrates Lemma 1. �e larger the action set ∣A∣, the larger the
proportional reduction in e�ort for a given percentage of satisfactory actions ñ.
For example, if 10% of available actions are deemed satisfactory, the reductions
in e�ort for action set sizes 10, 100, and 1000 are 45.0%, 90.8%, and 99.0%, re-
spectively.�is indicates that satis�cing could be especially useful for domains
with large action sets.
Furthermore, the relationship between e�ort and ñ is non-linear. �e de-

crease in e�ort obtained by adding another action to set of satisfactory actions
is large for small ñ (that is, when not many actions are deemed satisfactory yet)
but becomes negligible for large ñ. More speci�cally, if exactly one action is
deemed satisfactory (that is, ñ = 1), the e�ort is ∣A∣+12 , which for large ∣A∣, is
almost half of the e�ort that is required by the greedy policy. For ñ > 1, the

satisficing policies in markov decision processes 107

e�ort decreases further as the number of satisfactory actions increases, albeit at
a quadratically decreasing rate (Equation 6.2 in Lemma 1).
We now use Lemma 1 to provide conditions on when the ξ-satis�cing policy

is a Pareto improvement on the greedy policy.

�eorem 2 (Pareto improvement on greedy policy). Let qmax denote the
highest and q2 denote the second-highest q-value obtainable in a state
s with at least two available actions (that is, ∣A(s)∣ > 1). �en, for ξ ∈(q2 , qmax], the ξ-satis�cing policy is a Pareto improvement on the greedy
policy.

Proof of �eorem 2. In any given state s and for a given action-value func-
tion q, the greedy policy requires e�ort of e(π∗ , s) = ∣A(s)∣ and yields a
quality of u(π∗ , s) = maxa q(s, a). We will show that the ξ-satis�cing pol-
icy for ξ ∈ (q2 , qmax] yields the same quality as the greedy policy but has
lower e�ort.

Quality. �e quality of the satis�cing policy is given by the expected
value of all satisfactory actions, that is, u(π̃ξ , s) = E[q(a∣s)∣q(s, a) ≥ ξ].
Yet for ξ ∈ (q2 , qmax] only actions with value qmax are satisfactory and thus

u(π̃ξ , s∣ξ ∈ (q2 , qmax)) = E[q(a∣s)∣q(s, a) = qmax] = qmax ,

which is equivalent to the quality obtained by the greedy policy.
E�ort. For ξ ∈ (q2 , qmax] there is at least one action in A(s) that is

satisfactory, that is, ñ ≥ 1.�erefore, for ξ ∈ (q2 , qmax] and ∣A(s)∣ > 1, and
using Lemma 1,

f (π̃(ξ), s) ≤ ∣A(s)∣ + 1
2

< ∣A(s)∣ = f (π∗ , s),
which was to be shown.

6.4 from one-shot to sequential decision making .

In the previous section I analyzed, in the context of a single decision in anMDP,
how e�ort and quality of the ξ-satis�cing policy vary as a function of the aspi-
ration level ξ. In the following sections, I extend the analysis of the satis�cing
policy to entire MDPs and address the problem of how a satis�cing agent can
come up with suitable aspiration levels in the �rst place.
I develop three aspiration adaption rules to set aspiration levels dynamically

and study how a satis�cing agent using these rules trades o� quality and e�ort
across the entire decision-making process. Speci�cally, quality of a policy π will
be measured by the expected episode return, which is given by the value of the
starting state, denoted by vπ(s0).12 �e expected episode e�ort is de�ned as the 12 Recall that at the beginning of this chap-

ter we made the convenient assumption that
there is only one starting state s0 . Without this
assumption, the expected episode return of a
policy π would be given by Es0∼ρ0 [vπ(s0)].

expected sum of individual e�orts across all decisions if the agent follows policy

108

π. It is denoted by

F(π) = Ea t∼π(s t),t≥0[∞∑
t=0 f (π, st)], (6.3)

where f (π, st) is the expected e�ort required in state st (see De�nition 1).

6.5 aspiration tracking

Here I present an aspiration adaption rule called aspiration tracking. It is di-
rectly informed by�eorem 2, which states that if the aspiration level can be set
just below or equal to the maximum q-value in the current state, the satis�cing
policy requires less expected e�ort but yields optimal quality. Consequently, if
an agent could set the policy aspiration to the maximum q-value at every deci-
sion stage of a sequential decision making problem, the agent would follow an
optimal policy that requires less e�ort than the greedy policy.

�e problem, of course, is that the maximum q-value in a given state is in
general not known beforehand. Aspiration tracking is a simple aspiration adap-
tion rule that estimates the maximum q-value in any given state based on the
aspiration level used in the previously encountered state and the reward ob-
tained in the current transition.

De�nition 4 (Aspiration tracking). �e aspiration tracking update rule
with respect to a value function q is de�ned by the recursive function

ξt = ξt−1 − rt−1
γ

, for t > 0, (6.4)

and initial aspiration level ξ0 = v(s0).
�e initial aspiration level ξ0 can be interpreted as the cumulative return the
agent aspires to obtain across the entire episode. Intuitively speaking, the aspi-
ration tracking rule tracks how much of the initially aspired return is already
collected, or equivalently, how much return is yet to be obtained to achieve the
goal set out in the beginning. �is interpretation becomes apparent in the fol-
lowing toy example, which shows aspiration tracking applied to a toy MDP.

▸ Example 1: Aspiration tracking in a deterministic MDP. Consider
the episodic, deterministic, and undiscounted MDP, shown in Figure 6.6.

a0

<latexit sha1_base64="1sLmG0MNSqgFMZKiWj1+dVlGt7s=">AAACN3icdVDLSgMxFM34tr5aXQoSrIKrkqnW1p3gxo1Qqa1CO5RMmqmhmWRIMkId5hPc6rf4Ka7ciVv/wExboRU9EDic+8i5x4840wahN2dufmFxaXllNbe2vrG5lS9st7SMFaFNIrlUdz7WlDNBm4YZTu8iRXHoc3rrDy6y+u0DVZpJcWOGEfVC3BcsYAQbKzV0F3XzRVRC6LR8VoUZqVbKtYy4x5UzBF2rZCiCCerdgrPX6UkSh1QYwrHWbRdFxkuwMoxwmuY6saYRJgPcp21LBQ6p9pKR1xQeWqUHA6nsEwaO1OmJBIdaD0PfdobY3OvftUz8q9aOTVDzEiai2FBBxh8FMYdGwuxw2GOKEsOHlmCimPUKyT1WmBgbz8ymbDcPvOSKCZtRXck0dwinbWQNEX6UM6cmV6JhfUue2kR/YoP/k1a55FZK6PqkeH4wyXYF7IJ9cARcUAXn4BLUQRMQ0AdP4Bm8OK/Ou/PhfI5b55zJzA6YgfP1DeR6rJM=</latexit> s�
<latexit sha1_base64="zu6zYyJzuqX/mXhUNSdjbJC+G/A=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqrntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf3+ZLrJQ=</latexit>s�

<latexit sha1_base64="WIM+9RWIvF4GvFxToCgtdv7xNms=">AAACN3icdVDLSgMxFE18W5/VpSDBKrgqmWpt3Qlu3AiV2iq0Q8mkmRrMJEOSEerQT3Cr3+KnuHInbv0DM22FVvRA4HDuI+eeIBbcWIzf4Mzs3PzC4tJybmV1bX1jM7/VNCrRlDWoEkrfBsQwwSVrWG4Fu401I1Eg2E1wf57Vbx6YNlzJa9uPmR+RnuQhp8Q6qW46pc5mARcxPimdVlBGKuVSNSPeUfkUI88pGQpgjFonD3fbXUWTiElLBTGm5eHY+inRllPBBrl2YlhM6D3psZajkkTM+OnQ6wAdOKWLQqXdkxYN1cmJlETG9KPAdUbE3pnftUz8q9ZKbFj1Uy7jxDJJRx+FiUBWoexw1OWaUSv6jhCqufOK6B3RhFoXz9SmbLcI/fSSS5dRTatB7gBN2sgaYvKopk5NL2Xd+VZi4BL9iQ39T5qlolcu4qvjwtn+ONslsAP2wCHwQAWcgQtQAw1AQQ88gWfwAl/hO/yAn6PWGTie2QZTgF/f6ByslQ==</latexit> s�
<latexit sha1_base64="r+MweehaiBpQs/mjZSSUAHRSy+Q=">AAACN3icdVDLSgMxFE18W9+6FCRYC65KplqrO8GNG6GirYV2KJk0U4OZZEgyQh36CW71W/wUV+7ErX9gohWs6IHA4dxHzj1RKrixGD/Dicmp6ZnZufnCwuLS8srq2nrTqExT1qBKKN2KiGGCS9aw3ArWSjUjSSTYVXRz4utXt0wbruSlHaQsTEhf8phTYp10Ybp73dUiLmN8UDmqIU9q1cqhJ8Fe9QijwCkeRTBCvbsGtzo9RbOESUsFMaYd4NSGOdGWU8GGhU5mWEroDemztqOSJMyE+afXISo5pYdipd2TFn2qPydykhgzSCLXmRB7bX7XvPhXrZ3Z+DDMuUwzyyT9+ijOBLIK+cNRj2tGrRg4Qqjmziui10QTal08Y5v8bhGH+RmXLqO6VsNCCf204RtScqfGTs3P5IXzrcTQJfodG/qfNCvloFrG5/vF451RtnNgE2yDXRCAGjgGp6AOGoCCPrgHD+ARPsEX+Arfvlon4GhmA4wBvn8A6e2slg==</latexit> s�

<latexit sha1_base64="/ou0SDmkI4hraMuQAkv+a1El2Ec=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqjntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf38V1rII=</latexit> a�

a0<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a� a0<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a� a0<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a�

<latexit sha1_base64="meRjL9QJUmBk69hrlIV+6lGQGqI=">AAACdXicdVDLbhNBEBwvr2BeDhwRqIUJChKYXYNxckBE4sIlkhE4iWSvrN7xbDLK7MxqphdhVvs5fA1XOPAlXJlxHClG0KdSVT+qKyuVdBTHv1rRpctXrl7buN6+cfPW7TudzbsHzlSWizE3ytijDJ1QUosxSVLiqLQCi0yJw+z0XdAPPwvrpNGfaFGKtMBjLXPJkTw167y12+4Z4FN4A88TmMKUxBeqITcWUClwhCQcNODOFdRzQB6GA42zTjfuxfHr/u4QAhgO+jsBJC8HuzEkngnVZasazTZbD6dzw6tCaOIKnZskcUlpjZYkV6JpTysnSuSneCwmHmoshEvr5acNbHlmvnSXG02wZC9O1Fg4tygy31kgnbi/tUD+S5tUlO+ktdRlRULzs0N5pYAMhNhgLq3gpBYeILfSewV+gtYn4cNd2xR2qzyt96X2IY2sadpbcNFGaCjxq1l7td7XH71voxqf6Hls8H9w0O8lg1784VV3D1bZbrD77BHbZgkbsj32no3YmHH2jX1nP9jP1u/oQfQ4enLWGrVWM/fYWkUv/gAtmb7y</latexit>

r(s, a) = −� for all states s and actions a

a0<latexit sha1_base64="/ou0SDmkI4hraMuQAkv+a1El2Ec=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqjntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf38V1rII=</latexit> a� a0<latexit sha1_base64="/ou0SDmkI4hraMuQAkv+a1El2Ec=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqjntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf38V1rII=</latexit> a� Figure 6.6: Episodic MDP with four states
S = {s0 , s1 , s2 , s3} and two actions A =

{a1 , a2} available in every non-terminal state.
�e state s0 is the starting state and s3 is the
only terminal state. A reward of r(s, a) = −1
is received for all state-action pairs (s, a) ∈

S ×A. �e temporal discount factor is given
by γ = 1.

satisficing policies in markov decision processes 109

In what follows, we will walk through the decisions made by a satis�cing
agent that uses aspiration tracking to set the aspiration level in every time step of
the episode. We assume that the agent has access to the optimal value function
q∗, shown in Figure 6.7. �e initial aspiration level is set to ξ0 = v∗(s0) =−3. Because the discount factor is γ = 1, the aspiration tracking update rule
simpli�es to ξt = ξt−1 − rt−1. <latexit sha1_base64="soWqB8dq+ifM5TugeGkqpE1j36c=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24sWSqte1OcONGqI/aQjuUTJppg5lkSDJCHfoHbvVb/BU37sStn2BGK1jRA4HDuY+ce/yIM20QenYyM7Nz8wvZxdzS8srq2np+41rLWBHaJJJL1faxppwJ2jTMcNqOFMWhz2nLvzlJ661bqjST4sqMIuqFeCBYwAg2VrrYd3vrBVRC6Khcr8KUVCvlWkrcg0odQdcqKQpggkYv72x3+5LEIRWGcKx1x0WR8RKsDCOcjnPdWNMIkxs8oB1LBQ6p9pJPq2NYtEofBlLZJwz8VH9OJDjUehT6tjPEZqh/11Lxr1onNkHNS5iIYkMF+fooiDk0EqZ3wz5TlBg+sgQTxaxXSIZYYWJsOlOb0t088JIzJmxEDSXHuSL8aSNtiPCdnDo1OROX1rfkY5vod2zwf3JdLrmVEjo/LBzvTrLNgi2wA/aAC6rgGJyCBmgCAgJwDx7Ao/PkvDivzttXa8aZzGyCKTjvH5Q8q+U=</latexit>−�

<latexit sha1_base64="ugHvaP651opcVLChfkQEdXJs1Ek=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24scyM1rY7wY0boT5qC+1QMmmmDWaSIckIdZg/cKvf4q+4cSdu/QQzWsGKHggczn3k3ONHjCpt289WbmZ2bn4hv1hYWl5ZXVsvblwrEUtMWlgwITs+UoRRTlqaakY6kSQo9Blp+zcnWb19S6Sigl/pcUS8EA05DShG2kgX+25/vWRXbPvIbdRgRmpVt54R56DasKFjlAwlMEGzX7S2ewOB45BwjRlSquvYkfYSJDXFjKSFXqxIhPANGpKuoRyFRHnJp9UUlo0ygIGQ5nENP9WfEwkKlRqHvukMkR6p37VM/KvWjXVQ9xLKo1gTjr8+CmIGtYDZ3XBAJcGajQ1BWFLjFeIRkghrk87Upmw3C7zkjHITUVOKtFCGP21kDRG6E1OnJmf80vgWLDWJfscG/yfXbsWpVuzzw9Lx7iTbPNgCO2APOKAGjsEpaIIWwCAA9+ABPFpP1ov1ar19teasycwmmIL1/gGWDavm</latexit>−�
<latexit sha1_base64="ugHvaP651opcVLChfkQEdXJs1Ek=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24scyM1rY7wY0boT5qC+1QMmmmDWaSIckIdZg/cKvf4q+4cSdu/QQzWsGKHggczn3k3ONHjCpt289WbmZ2bn4hv1hYWl5ZXVsvblwrEUtMWlgwITs+UoRRTlqaakY6kSQo9Blp+zcnWb19S6Sigl/pcUS8EA05DShG2kgX+25/vWRXbPvIbdRgRmpVt54R56DasKFjlAwlMEGzX7S2ewOB45BwjRlSquvYkfYSJDXFjKSFXqxIhPANGpKuoRyFRHnJp9UUlo0ygIGQ5nENP9WfEwkKlRqHvukMkR6p37VM/KvWjXVQ9xLKo1gTjr8+CmIGtYDZ3XBAJcGajQ1BWFLjFeIRkghrk87Upmw3C7zkjHITUVOKtFCGP21kDRG6E1OnJmf80vgWLDWJfscG/yfXbsWpVuzzw9Lx7iTbPNgCO2APOKAGjsEpaIIWwCAA9+ABPFpP1ov1ar19teasycwmmIL1/gGWDavm</latexit>−�<latexit sha1_base64="ViRWOijR/HaYPP8VUV/ZTB8JOjM=">AAACNnicdVDLSgMxFE181vrWpSDBKrixZKq17a7gxo1QH1WhDpJJMxrMJEOSEerQP3Cr3+KvuHEnbv0EE61gRQ8EDuc+cu6JUsGNxfgZjoyOjU9MFqaK0zOzc/MLi0unRmWasjZVQunziBgmuGRty61g56lmJIkEO4tu9nz97JZpw5U8sb2UhQm5kjzmlFgnHW1tXy6UcBnj3UqjhjypVSt1T4LtagOjwCkeJTBA63IRrl50Fc0SJi0VxJhOgFMb5kRbTgXrFy8yw1JCb8gV6zgqScJMmH9a7aMNp3RRrLR70qJP9edEThJjeknkOhNir83vmhf/qnUyG9fDnMs0s0zSr4/iTCCrkL8bdblm1IqeI4Rq7rwiek00odalM7TJ7xZxmB9w6SJqadUvbqCfNnxDSu7U0Kn5gTx2vpXou0S/Y0P/k9NKOaiW8eFOqbk+yLYAVsAa2AQBqIEm2Act0AYUxOAePIBH+ARf4Ct8+2odgYOZZTAE+P4Bl96r5w==</latexit>−�

<latexit sha1_base64="ViRWOijR/HaYPP8VUV/ZTB8JOjM=">AAACNnicdVDLSgMxFE181vrWpSDBKrixZKq17a7gxo1QH1WhDpJJMxrMJEOSEerQP3Cr3+KvuHEnbv0EE61gRQ8EDuc+cu6JUsGNxfgZjoyOjU9MFqaK0zOzc/MLi0unRmWasjZVQunziBgmuGRty61g56lmJIkEO4tu9nz97JZpw5U8sb2UhQm5kjzmlFgnHW1tXy6UcBnj3UqjhjypVSt1T4LtagOjwCkeJTBA63IRrl50Fc0SJi0VxJhOgFMb5kRbTgXrFy8yw1JCb8gV6zgqScJMmH9a7aMNp3RRrLR70qJP9edEThJjeknkOhNir83vmhf/qnUyG9fDnMs0s0zSr4/iTCCrkL8bdblm1IqeI4Rq7rwiek00odalM7TJ7xZxmB9w6SJqadUvbqCfNnxDSu7U0Kn5gTx2vpXou0S/Y0P/k9NKOaiW8eFOqbk+yLYAVsAa2AQBqIEm2Act0AYUxOAePIBH+ARf4Ct8+2odgYOZZTAE+P4Bl96r5w==</latexit>−�<latexit sha1_base64="PQrLypxEKtndx0EoCdjQTNmKTjE=">AAACNnicdVDLSgMxFE181vrWpSDBKrixZKq17a7gxo1QH1WhDpJJMxrMJEOSEerQP3Cr3+KvuHEnbv0EE61gRQ8EDuc+cu6JUsGNxfgZjoyOjU9MFqaK0zOzc/MLi0unRmWasjZVQunziBgmuGRty61g56lmJIkEO4tu9nz97JZpw5U8sb2UhQm5kjzmlFgnHW3tXC6UcBnj3UqjhjypVSt1T4LtagOjwCkeJTBA63IRrl50Fc0SJi0VxJhOgFMb5kRbTgXrFy8yw1JCb8gV6zgqScJMmH9a7aMNp3RRrLR70qJP9edEThJjeknkOhNir83vmhf/qnUyG9fDnMs0s0zSr4/iTCCrkL8bdblm1IqeI4Rq7rwiek00odalM7TJ7xZxmB9w6SJqadUvbqCfNnxDSu7U0Kn5gTx2vpXou0S/Y0P/k9NKOaiW8eFOqbk+yLYAVsAa2AQBqIEm2Act0AYUxOAePIBH+ARf4Ct8+2odgYOZZTAE+P4Bma+r6A==</latexit>−�<latexit sha1_base64="/ou0SDmkI4hraMuQAkv+a1El2Ec=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqjntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf38V1rII=</latexit> a�

<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a�

<latexit sha1_base64="WIM+9RWIvF4GvFxToCgtdv7xNms=">AAACN3icdVDLSgMxFE18W5/VpSDBKrgqmWpt3Qlu3AiV2iq0Q8mkmRrMJEOSEerQT3Cr3+KnuHInbv0DM22FVvRA4HDuI+eeIBbcWIzf4Mzs3PzC4tJybmV1bX1jM7/VNCrRlDWoEkrfBsQwwSVrWG4Fu401I1Eg2E1wf57Vbx6YNlzJa9uPmR+RnuQhp8Q6qW46pc5mARcxPimdVlBGKuVSNSPeUfkUI88pGQpgjFonD3fbXUWTiElLBTGm5eHY+inRllPBBrl2YlhM6D3psZajkkTM+OnQ6wAdOKWLQqXdkxYN1cmJlETG9KPAdUbE3pnftUz8q9ZKbFj1Uy7jxDJJRx+FiUBWoexw1OWaUSv6jhCqufOK6B3RhFoXz9SmbLcI/fSSS5dRTatB7gBN2sgaYvKopk5NL2Xd+VZi4BL9iQ39T5qlolcu4qvjwtn+ONslsAP2wCHwQAWcgQtQAw1AQQ88gWfwAl/hO/yAn6PWGTie2QZTgF/f6ByslQ==</latexit> s�
<latexit sha1_base64="zu6zYyJzuqX/mXhUNSdjbJC+G/A=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqrntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf3+ZLrJQ=</latexit>s�

<latexit sha1_base64="1sLmG0MNSqgFMZKiWj1+dVlGt7s=">AAACN3icdVDLSgMxFM34tr5aXQoSrIKrkqnW1p3gxo1Qqa1CO5RMmqmhmWRIMkId5hPc6rf4Ka7ciVv/wExboRU9EDic+8i5x4840wahN2dufmFxaXllNbe2vrG5lS9st7SMFaFNIrlUdz7WlDNBm4YZTu8iRXHoc3rrDy6y+u0DVZpJcWOGEfVC3BcsYAQbKzV0F3XzRVRC6LR8VoUZqVbKtYy4x5UzBF2rZCiCCerdgrPX6UkSh1QYwrHWbRdFxkuwMoxwmuY6saYRJgPcp21LBQ6p9pKR1xQeWqUHA6nsEwaO1OmJBIdaD0PfdobY3OvftUz8q9aOTVDzEiai2FBBxh8FMYdGwuxw2GOKEsOHlmCimPUKyT1WmBgbz8ymbDcPvOSKCZtRXck0dwinbWQNEX6UM6cmV6JhfUue2kR/YoP/k1a55FZK6PqkeH4wyXYF7IJ9cARcUAXn4BLUQRMQ0AdP4Bm8OK/Ou/PhfI5b55zJzA6YgfP1DeR6rJM=</latexit> s�
<latexit sha1_base64="UXZTlNo7PUvqDIfm46H7St0SDis=">AAACPHicdVDLSgMxFM34rPVVdSlIsBZclZlqrd0JbtwIFa0ttEPJpJk2NJOMSUaow/yEW/0W/8O9O3Hr2kQrWNEDgcO5j5x7gphRpV332ZmZnZtfWMwt5ZdXVtfWCxub10okEpMmFkzIdoAUYZSTpqaakXYsCYoCRlrB6NTWW7dEKir4lR7HxI/QgNOQYqSN1L7ppV2kdNYrFN2y6x5V6jVoSa1aObbEO6jWXegZxaIIJmj0Npydbl/gJCJcY4aU6nhurP0USU0xI1m+mygSIzxCA9IxlKOIKD/9NJzBklH6MBTSPK7hp/pzIkWRUuMoMJ0R0kP1u2bFv2qdRIfHfkp5nGjC8ddHYcKgFtBeD/tUEqzZ2BCEJTVeIR4iibA2GU1tsrtZ6KfnlJugGlJk+RL8acM2xOhOTJ2anvNL41swm+h3bPB/cl0pe9Wye3FYPNmbZJsD22AX7AMP1MAJOAMN0AQYMHAPHsCj8+S8OK/O21frjDOZ2QJTcN4/AAvbry8=</latexit>q∗

Figure 6.7: Optimal value function q∗(s, a)
for the toy MDP shown in Figure 6.6.

�e agent observes the initial state s0 and starts considering actions in ran-
dom order until a satisfactory action is found. �e two actions in s0 have ac-
tion values q∗(s0 , a1) = −4 (which is lower than the aspiration level ξ0) and
q∗(s0 , a2) = −3 (which is equal to the aspiration level ξ0). �at is, only a2 is
satisfactory. Regardless of the order in which actions are considered, the agent
eventually selects action a2.�e agent receives a reward of r0 = −1 and observes
the new state of the environment, s1.
In time step t = 1, the aspiration level is updated to ξ1 = ξ0 − r0 = −3−(−1) =−2. Just as in the previous time step, only action a2 is satisfactory (see Figure

6.7) and thus eventually selected by the agent. In time step t = 2, the aspiration
level is set to ξ2 = ξ1 − r1 = −2 − (−1) = −1. �e agent thus selects action a2 yet
again and arrives at the terminal state s3.

<latexit sha1_base64="RP7TjhvY/5zR0C+52PbSUhO5D6k=">AAACNXicdVDLSgMxFM34rPVZXQoSrIKrkqnWtruCGzeFFq0t1EEyaUaDmWRIMkId5gvc6rf4LS7ciVt/wUxboRU9EDic+8i5x4840wahN2dufmFxaTm3kl9dW9/Y3CpsX2kZK0I7RHKpej7WlDNBO4YZTnuRojj0Oe3692dZvftAlWZSXJphRL0Q3woWMIKNldrmZquISgidlutVmJFqpVzLiHtcqSPoWiVDEUzQuik4e9cDSeKQCkM41rrvosh4CVaGEU7T/HWsaYTJPb6lfUsFDqn2kpHTFB5aZQADqewTBo7U6YkEh1oPQ992htjc6d+1TPyr1o9NUPMSJqLYUEHGHwUxh0bC7Gw4YIoSw4eWYKKY9QrJHVaYGBvOzKZsNw+8pMmETailZJo/hNM2soYIP8qZU5OmuLC+JU9toj+xwf/JVbnkVkqofVJsHEyyzYFdsA+OgAuqoAHOQQt0AAEUPIFn8OK8Ou/Oh/M5bp1zJjM7YAbO1zeW1Kvx</latexit>t
<latexit sha1_base64="C0BvsYACq4xxB9CQygh2RtL8Y/o=">AAACNXicdVDLSgMxFM34rPVZXQoSrAVXJVOtbXcFN24KLdoqtEPJpBkNZpIhyQh16Be41W/xW1y4E7f+gpm2Qit6IHA495Fzjx9xpg1Cb87C4tLyympmLbu+sbm1vZPb7WgZK0LbRHKpbnysKWeCtg0znN5EiuLQ5/Tavz9P69cPVGkmxZUZRtQL8a1gASPYWKmF+jt5VETorFSrwJRUyqVqStyTcg1B1yop8mCKZj/nHPQGksQhFYZwrHXXRZHxEqwMI5yOsr1Y0wiTe3xLu5YKHFLtJWOnI1iwygAGUtknDByrsxMJDrUehr7tDLG5079rqfhXrRuboOolTESxoYJMPgpiDo2E6dlwwBQlhg8twUQx6xWSO6wwMTacuU3pbh54SYMJm1BTyVG2AGdtpA0RfpRzpyYNcWl9Sz6yif7EBv8nnVLRLRdR6zRfP5pmmwH74BAcAxdUQB1cgCZoAwIoeALP4MV5dd6dD+dz0rrgTGf2wBycr28bUKut</latexit>� <latexit sha1_base64="R6Adn/XD+3rT3h/hMpNQlBfH7YA=">AAACNXicdVDdSgJBGJ3t1+xP6zKIIRO6kl3L1Duhm24EpbRAF5kdZ3VwdmaZmQ1s8Qm6rWfpWbroLrrtFZpVA406MHA438+c73gho0rb9pu1srq2vrGZ2kpv7+zu7WeyB20lIolJCwsm5L2HFGGUk5ammpH7UBIUeIzceaOrpH73QKSigt/qcUjcAA049SlG2khNp5fJ2QXbvixWyzAh5VKxkhDnvFS1oWOUBDkwR6OXtY67fYGjgHCNGVKq49ihdmMkNcWMTNLdSJEQ4REakI6hHAVEufHU6QTmjdKHvpDmcQ2n6uJEjAKlxoFnOgOkh+p3LRH/qnUi7VfcmPIw0oTj2Ud+xKAWMDkb9qkkWLOxIQhLarxCPEQSYW3CWdqU7Ga+G9cpNwk1pJik83DRRtIQokexdGpc5zfGt2ATk+hPbPB/0i4WnFLBbl7kaqfzbFPgCJyAM+CAMqiBa9AALYABAU/gGbxYr9a79WF9zlpXrPnMIViC9fUNHSGrrg==</latexit>� <latexit sha1_base64="7Yq3CBAR87PoctQ6ubPCjJHShq4=">AAACNXicdVDLSgMxFM34rPVVdSlIsBZclUy11u4EN26EivYB7VAyaaYNzSRDkhHqMF/gVr/Fb3HhTtz6C2a0ghU9EDic+8i5x4840wahZ2dufmFxaTm3kl9dW9/YLGxtt7SMFaFNIrlUHR9rypmgTcMMp51IURz6nLb98XlWb99SpZkUN2YSUS/EQ8ECRrCx0lWlXyiiMkInlXoNZqRWrZxmxD2q1hF0rZKhCKZo9Lecvd5AkjikwhCOte66KDJegpVhhNM034s1jTAZ4yHtWipwSLWXfDpNYckqAxhIZZ8w8FP9OZHgUOtJ6NvOEJuR/l3LxL9q3dgEp17CRBQbKsjXR0HMoZEwOxsOmKLE8IklmChmvUIywgoTY8OZ2ZTt5oGXXDJhE2oomeZL8KeNrCHCd3Lm1ORSXFvfkqc20e/Y4P+kVSm71TK6Oi6eHUyzzYFdsA8OgQtq4AxcgAZoAgIouAcP4NF5cl6cV+ftq3XOmc7sgBk47x8e8quv</latexit>� <latexit sha1_base64="NIPAbwqbgzseZjm6+gc3IgyD++E=">AAACNXicdVDLSgMxFE3qq9a3LgUJ1oKrkqnW1p3gxo1Q0apQB8mkmTaYSYYkI9ShX+BWv8VvceFO3PoLJlrBih4IHM595NwTpYIbi/EzLExMTk3PFGdLc/MLi0vLK6vnRmWasjZVQunLiBgmuGRty61gl6lmJIkEu4huDn394pZpw5U8s4OUhQnpSR5zSqyTTnaul8u4ivFebb+BPGnUa01Pgp36PkaBUzzKYITW9QrcuOoqmiVMWiqIMZ0ApzbMibacCjYsXWWGpYTekB7rOCpJwkyYfzodoopTuihW2j1p0af6cyIniTGDJHKdCbF987vmxb9qnczGzTDnMs0sk/TrozgTyCrkz0Zdrhm1YuAIoZo7r4j2iSbUunDGNvndIg7zYy5dQi2thqUK+mnDN6TkTo2dmh/LU+dbiaFL9Ds29D85r1WDehWf7JYPtkbZFsE62ATbIAANcACOQAu0AQUM3IMH8Aif4At8hW9frQU4mlkDY4DvHyDDq7A=</latexit>�

<latexit sha1_base64="1sLmG0MNSqgFMZKiWj1+dVlGt7s=">AAACN3icdVDLSgMxFM34tr5aXQoSrIKrkqnW1p3gxo1Qqa1CO5RMmqmhmWRIMkId5hPc6rf4Ka7ciVv/wExboRU9EDic+8i5x4840wahN2dufmFxaXllNbe2vrG5lS9st7SMFaFNIrlUdz7WlDNBm4YZTu8iRXHoc3rrDy6y+u0DVZpJcWOGEfVC3BcsYAQbKzV0F3XzRVRC6LR8VoUZqVbKtYy4x5UzBF2rZCiCCerdgrPX6UkSh1QYwrHWbRdFxkuwMoxwmuY6saYRJgPcp21LBQ6p9pKR1xQeWqUHA6nsEwaO1OmJBIdaD0PfdobY3OvftUz8q9aOTVDzEiai2FBBxh8FMYdGwuxw2GOKEsOHlmCimPUKyT1WmBgbz8ymbDcPvOSKCZtRXck0dwinbWQNEX6UM6cmV6JhfUue2kR/YoP/k1a55FZK6PqkeH4wyXYF7IJ9cARcUAXn4BLUQRMQ0AdP4Bm8OK/Ou/PhfI5b55zJzA6YgfP1DeR6rJM=</latexit> s�
<latexit sha1_base64="zu6zYyJzuqX/mXhUNSdjbJC+G/A=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqrntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf3+ZLrJQ=</latexit>s�

<latexit sha1_base64="WIM+9RWIvF4GvFxToCgtdv7xNms=">AAACN3icdVDLSgMxFE18W5/VpSDBKrgqmWpt3Qlu3AiV2iq0Q8mkmRrMJEOSEerQT3Cr3+KnuHInbv0DM22FVvRA4HDuI+eeIBbcWIzf4Mzs3PzC4tJybmV1bX1jM7/VNCrRlDWoEkrfBsQwwSVrWG4Fu401I1Eg2E1wf57Vbx6YNlzJa9uPmR+RnuQhp8Q6qW46pc5mARcxPimdVlBGKuVSNSPeUfkUI88pGQpgjFonD3fbXUWTiElLBTGm5eHY+inRllPBBrl2YlhM6D3psZajkkTM+OnQ6wAdOKWLQqXdkxYN1cmJlETG9KPAdUbE3pnftUz8q9ZKbFj1Uy7jxDJJRx+FiUBWoexw1OWaUSv6jhCqufOK6B3RhFoXz9SmbLcI/fSSS5dRTatB7gBN2sgaYvKopk5NL2Xd+VZi4BL9iQ39T5qlolcu4qvjwtn+ONslsAP2wCHwQAWcgQtQAw1AQQ88gWfwAl/hO/yAn6PWGTie2QZTgF/f6ByslQ==</latexit> s�
<latexit sha1_base64="r+MweehaiBpQs/mjZSSUAHRSy+Q=">AAACN3icdVDLSgMxFE18W9+6FCRYC65KplqrO8GNG6GirYV2KJk0U4OZZEgyQh36CW71W/wUV+7ErX9gohWs6IHA4dxHzj1RKrixGD/Dicmp6ZnZufnCwuLS8srq2nrTqExT1qBKKN2KiGGCS9aw3ArWSjUjSSTYVXRz4utXt0wbruSlHaQsTEhf8phTYp10Ybp73dUiLmN8UDmqIU9q1cqhJ8Fe9QijwCkeRTBCvbsGtzo9RbOESUsFMaYd4NSGOdGWU8GGhU5mWEroDemztqOSJMyE+afXISo5pYdipd2TFn2qPydykhgzSCLXmRB7bX7XvPhXrZ3Z+DDMuUwzyyT9+ijOBLIK+cNRj2tGrRg4Qqjmziui10QTal08Y5v8bhGH+RmXLqO6VsNCCf204RtScqfGTs3P5IXzrcTQJfodG/qfNCvloFrG5/vF451RtnNgE2yDXRCAGjgGp6AOGoCCPrgHD+ARPsEX+Arfvlon4GhmA4wBvn8A6e2slg==</latexit> s�

<latexit sha1_base64="ViRWOijR/HaYPP8VUV/ZTB8JOjM=">AAACNnicdVDLSgMxFE181vrWpSDBKrixZKq17a7gxo1QH1WhDpJJMxrMJEOSEerQP3Cr3+KvuHEnbv0EE61gRQ8EDuc+cu6JUsGNxfgZjoyOjU9MFqaK0zOzc/MLi0unRmWasjZVQunziBgmuGRty61g56lmJIkEO4tu9nz97JZpw5U8sb2UhQm5kjzmlFgnHW1tXy6UcBnj3UqjhjypVSt1T4LtagOjwCkeJTBA63IRrl50Fc0SJi0VxJhOgFMb5kRbTgXrFy8yw1JCb8gV6zgqScJMmH9a7aMNp3RRrLR70qJP9edEThJjeknkOhNir83vmhf/qnUyG9fDnMs0s0zSr4/iTCCrkL8bdblm1IqeI4Rq7rwiek00odalM7TJ7xZxmB9w6SJqadUvbqCfNnxDSu7U0Kn5gTx2vpXou0S/Y0P/k9NKOaiW8eFOqbk+yLYAVsAa2AQBqIEm2Act0AYUxOAePIBH+ARf4Ct8+2odgYOZZTAE+P4Bl96r5w==</latexit>−� <latexit sha1_base64="ugHvaP651opcVLChfkQEdXJs1Ek=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24scyM1rY7wY0boT5qC+1QMmmmDWaSIckIdZg/cKvf4q+4cSdu/QQzWsGKHggczn3k3ONHjCpt289WbmZ2bn4hv1hYWl5ZXVsvblwrEUtMWlgwITs+UoRRTlqaakY6kSQo9Blp+zcnWb19S6Sigl/pcUS8EA05DShG2kgX+25/vWRXbPvIbdRgRmpVt54R56DasKFjlAwlMEGzX7S2ewOB45BwjRlSquvYkfYSJDXFjKSFXqxIhPANGpKuoRyFRHnJp9UUlo0ygIGQ5nENP9WfEwkKlRqHvukMkR6p37VM/KvWjXVQ9xLKo1gTjr8+CmIGtYDZ3XBAJcGajQ1BWFLjFeIRkghrk87Upmw3C7zkjHITUVOKtFCGP21kDRG6E1OnJmf80vgWLDWJfscG/yfXbsWpVuzzw9Lx7iTbPNgCO2APOKAGjsEpaIIWwCAA9+ABPFpP1ov1ar19teasycwmmIL1/gGWDavm</latexit>−� <latexit sha1_base64="soWqB8dq+ifM5TugeGkqpE1j36c=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24sWSqte1OcONGqI/aQjuUTJppg5lkSDJCHfoHbvVb/BU37sStn2BGK1jRA4HDuY+ce/yIM20QenYyM7Nz8wvZxdzS8srq2np+41rLWBHaJJJL1faxppwJ2jTMcNqOFMWhz2nLvzlJ661bqjST4sqMIuqFeCBYwAg2VrrYd3vrBVRC6Khcr8KUVCvlWkrcg0odQdcqKQpggkYv72x3+5LEIRWGcKx1x0WR8RKsDCOcjnPdWNMIkxs8oB1LBQ6p9pJPq2NYtEofBlLZJwz8VH9OJDjUehT6tjPEZqh/11Lxr1onNkHNS5iIYkMF+fooiDk0EqZ3wz5TlBg+sgQTxaxXSIZYYWJsOlOb0t088JIzJmxEDSXHuSL8aSNtiPCdnDo1OROX1rfkY5vod2zwf3JdLrmVEjo/LBzvTrLNgi2wA/aAC6rgGJyCBmgCAgJwDx7Ao/PkvDivzttXa8aZzGyCKTjvH5Q8q+U=</latexit>−� <latexit sha1_base64="C0BvsYACq4xxB9CQygh2RtL8Y/o=">AAACNXicdVDLSgMxFM34rPVZXQoSrAVXJVOtbXcFN24KLdoqtEPJpBkNZpIhyQh16Be41W/xW1y4E7f+gpm2Qit6IHA495Fzjx9xpg1Cb87C4tLyympmLbu+sbm1vZPb7WgZK0LbRHKpbnysKWeCtg0znN5EiuLQ5/Tavz9P69cPVGkmxZUZRtQL8a1gASPYWKmF+jt5VETorFSrwJRUyqVqStyTcg1B1yop8mCKZj/nHPQGksQhFYZwrHXXRZHxEqwMI5yOsr1Y0wiTe3xLu5YKHFLtJWOnI1iwygAGUtknDByrsxMJDrUehr7tDLG5079rqfhXrRuboOolTESxoYJMPgpiDo2E6dlwwBQlhg8twUQx6xWSO6wwMTacuU3pbh54SYMJm1BTyVG2AGdtpA0RfpRzpyYNcWl9Sz6yif7EBv8nnVLRLRdR6zRfP5pmmwH74BAcAxdUQB1cgCZoAwIoeALP4MV5dd6dD+dz0rrgTGf2wBycr28bUKut</latexit>�

<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a�
<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a�

<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a�
<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a�

<latexit sha1_base64="ViRWOijR/HaYPP8VUV/ZTB8JOjM=">AAACNnicdVDLSgMxFE181vrWpSDBKrixZKq17a7gxo1QH1WhDpJJMxrMJEOSEerQP3Cr3+KvuHEnbv0EE61gRQ8EDuc+cu6JUsGNxfgZjoyOjU9MFqaK0zOzc/MLi0unRmWasjZVQunziBgmuGRty61g56lmJIkEO4tu9nz97JZpw5U8sb2UhQm5kjzmlFgnHW1tXy6UcBnj3UqjhjypVSt1T4LtagOjwCkeJTBA63IRrl50Fc0SJi0VxJhOgFMb5kRbTgXrFy8yw1JCb8gV6zgqScJMmH9a7aMNp3RRrLR70qJP9edEThJjeknkOhNir83vmhf/qnUyG9fDnMs0s0zSr4/iTCCrkL8bdblm1IqeI4Rq7rwiek00odalM7TJ7xZxmB9w6SJqadUvbqCfNnxDSu7U0Kn5gTx2vpXou0S/Y0P/k9NKOaiW8eFOqbk+yLYAVsAa2AQBqIEm2Act0AYUxOAePIBH+ARf4Ct8+2odgYOZZTAE+P4Bl96r5w==</latexit>−� <latexit sha1_base64="ugHvaP651opcVLChfkQEdXJs1Ek=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24scyM1rY7wY0boT5qC+1QMmmmDWaSIckIdZg/cKvf4q+4cSdu/QQzWsGKHggczn3k3ONHjCpt289WbmZ2bn4hv1hYWl5ZXVsvblwrEUtMWlgwITs+UoRRTlqaakY6kSQo9Blp+zcnWb19S6Sigl/pcUS8EA05DShG2kgX+25/vWRXbPvIbdRgRmpVt54R56DasKFjlAwlMEGzX7S2ewOB45BwjRlSquvYkfYSJDXFjKSFXqxIhPANGpKuoRyFRHnJp9UUlo0ygIGQ5nENP9WfEwkKlRqHvukMkR6p37VM/KvWjXVQ9xLKo1gTjr8+CmIGtYDZ3XBAJcGajQ1BWFLjFeIRkghrk87Upmw3C7zkjHITUVOKtFCGP21kDRG6E1OnJmf80vgWLDWJfscG/yfXbsWpVuzzw9Lx7iTbPNgCO2APOKAGjsEpaIIWwCAA9+ABPFpP1ov1ar19teasycwmmIL1/gGWDavm</latexit>−� <latexit sha1_base64="soWqB8dq+ifM5TugeGkqpE1j36c=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24sWSqte1OcONGqI/aQjuUTJppg5lkSDJCHfoHbvVb/BU37sStn2BGK1jRA4HDuY+ce/yIM20QenYyM7Nz8wvZxdzS8srq2np+41rLWBHaJJJL1faxppwJ2jTMcNqOFMWhz2nLvzlJ661bqjST4sqMIuqFeCBYwAg2VrrYd3vrBVRC6Khcr8KUVCvlWkrcg0odQdcqKQpggkYv72x3+5LEIRWGcKx1x0WR8RKsDCOcjnPdWNMIkxs8oB1LBQ6p9pJPq2NYtEofBlLZJwz8VH9OJDjUehT6tjPEZqh/11Lxr1onNkHNS5iIYkMF+fooiDk0EqZ3wz5TlBg+sgQTxaxXSIZYYWJsOlOb0t088JIzJmxEDSXHuSL8aSNtiPCdnDo1OROX1rfkY5vod2zwf3JdLrmVEjo/LBzvTrLNgi2wA/aAC6rgGJyCBmgCAgJwDx7Ao/PkvDivzttXa8aZzGyCKTjvH5Q8q+U=</latexit>−� <latexit sha1_base64="C0BvsYACq4xxB9CQygh2RtL8Y/o=">AAACNXicdVDLSgMxFM34rPVZXQoSrAVXJVOtbXcFN24KLdoqtEPJpBkNZpIhyQh16Be41W/xW1y4E7f+gpm2Qit6IHA495Fzjx9xpg1Cb87C4tLyympmLbu+sbm1vZPb7WgZK0LbRHKpbnysKWeCtg0znN5EiuLQ5/Tavz9P69cPVGkmxZUZRtQL8a1gASPYWKmF+jt5VETorFSrwJRUyqVqStyTcg1B1yop8mCKZj/nHPQGksQhFYZwrHXXRZHxEqwMI5yOsr1Y0wiTe3xLu5YKHFLtJWOnI1iwygAGUtknDByrsxMJDrUehr7tDLG5079rqfhXrRuboOolTESxoYJMPgpiDo2E6dlwwBQlhg8twUQx6xWSO6wwMTacuU3pbh54SYMJm1BTyVG2AGdtpA0RfpRzpyYNcWl9Sz6yif7EBv8nnVLRLRdR6zRfP5pmmwH74BAcAxdUQB1cgCZoAwIoeALP4MV5dd6dD+dz0rrgTGf2wBycr28bUKut</latexit>�

<latexit sha1_base64="Jpc706XA8VtMKmecGAqAJQlBMBg=">AAACTnicdVDRShtBFJ1NtcZo21hfCoUyNAr2Jeymxuib0BdfhBSNCsmy3J3M6uDszDpztzSu69f0tX6Lr/2RvpV2ViOYohcGDuece+feE2dSWPT9X17txdz8y4X6YmNp+dXrN82Vt0dW54bxAdNSm5MYLJdC8QEKlPwkMxzSWPLj+PxLpR9/48YKrQ5xkvEwhVMlEsEAHRU1341S+B4BvYiKEVgsN4BeURvhp6jZ8tu+v9XZ6dEK9Lqd7QoEn7s7Pg0cU1WLTKsfrXgfRmPN8pQrZBKsHQZ+hmEBBgWTvGyMcsszYOdwyocOKki5DYu7E0q67pgxTbRxTyG9Yx93FJBaO0lj50wBz+z/WkU+pQ1zTLbDQqgsR67Y/UdJLilqWuVBx8JwhnLiADAj3K6UnYEBhi61mUnVbJmExb5QLrq+0WVjnT5eozJkcKlnTi321YHbW8vSJfoQG30eHHXaQbftf91s7a5Ns62T9+Qj2SAB6ZFdskf6ZEAYuSY/yE9y4916v70/3t97a82b9qySmarV/wG1hrQ3</latexit>

max
a

q∗(a�st)
<latexit sha1_base64="LiKvrfqL05SMTsVhcGAl38FA2Jo=">AAACPXicdVDLSgMxFM3UV62vVpeCBGtBEMpM7UN3ghs3QkVrK+1YMmmmBjPJkGTEOsxXuNVv8Tv8AHfi1q0ZrWBFDwQO5z5y7vFCRpW27WcrMzU9MzuXnc8tLC4tr+QLq+dKRBKTFhZMyI6HFGGUk5ammpFOKAkKPEba3vVhWm/fEKmo4Gd6FBI3QENOfYqRNtJF75ZexjtJX/fzRbts2/XKfgOmpFGr7KXE2a3t29AxSooiGKPZL1gbvYHAUUC4xgwp1XXsULsxkppiRpJcL1IkRPgaDUnXUI4Cotz403ECS0YZQF9I87iGn+rPiRgFSo0Cz3QGSF+p37VU/KvWjbS/58aUh5EmHH995EcMagHT8+GASoI1GxmCsKTGK8RXSCKsTUgTm9LdzHfjY8pNUk0pklwJ/rSRNoToTkycGh/zU+NbsMQk+h0b/J+cV8pOvVw9qRYPtsbZZsE62ATbwAENcACOQBO0AAYBuAcP4NF6sl6sV+vtqzVjjWfWwASs9w94gK9j</latexit>

ξ+t

<latexit sha1_base64="+9aETSClQQOTrGChhzn33tiApks=">AAACNXicdVDLSgMxFM34tr5aXQoSrAVXZaZqW3cFN24KFe0D2qFk0kwbmkmGJCPUoV/gVr/Fb3HhTtz6CyZawYoeCBzOfeTcE8SMKu26z87C4tLyyuraemZjc2t7J5vbbSmRSEyaWDAhOwFShFFOmppqRjqxJCgKGGkH4wtbb98SqajgN3oSEz9CQ05DipE20pXqZ/Nu0XXLpfMKtKRyVqpa4p2cnbvQM4pFHszQ6Oecg95A4CQiXGOGlOp6bqz9FElNMSPTTC9RJEZ4jIakayhHEVF++ul0CgtGGcBQSPO4hp/qz4kURUpNosB0RkiP1O+aFf+qdRMdVv2U8jjRhOOvj8KEQS2gPRsOqCRYs4khCEtqvEI8QhJhbcKZ22R3s9BP65SbhBpSTDMF+NOGbYjRnZg7Na3za+NbsKlJ9Ds2+D9plYpeuXh6dZqvHc2yXQP74BAcAw9UQA1cggZoAgwIuAcP4NF5cl6cV+ftq3XBmc3sgTk47x+Wn6v1</latexit> s

<latexit sha1_base64="UavVgHjYcU3Tfjzwhga/zMdsya8=">AAACNXicdVDLSgMxFM34tr5aXQoSrAVXZaZqW3cFN24KFe0D2qFk0kwbmkmGJCPUoV/gVr/Fb3HhTtz6CyZawYoeCBzOfeTcE8SMKu26z87C4tLyyuraemZjc2t7J5vbbSmRSEyaWDAhOwFShFFOmppqRjqxJCgKGGkH4wtbb98SqajgN3oSEz9CQ05DipE20hXqZ/Nu0XXLpfMKtKRyVqpa4p2cnbvQM4pFHszQ6Oecg95A4CQiXGOGlOp6bqz9FElNMSPTTC9RJEZ4jIakayhHEVF++ul0CgtGGcBQSPO4hp/qz4kURUpNosB0RkiP1O+aFf+qdRMdVv2U8jjRhOOvj8KEQS2gPRsOqCRYs4khCEtqvEI8QhJhbcKZ22R3s9BP65SbhBpSTDMF+NOGbYjRnZg7Na3za+NbsKlJ9Ds2+D9plYpeuXh6dZqvHc2yXQP74BAcAw9UQA1cggZoAgwIuAcP4NF5cl6cV+ftq3XBmc3sgTk47x917avj</latexit>a

Figure 6.8: Episode summary of a satis�c-
ing agent in the toy MDP. For each decision
stage t = 0, 1, 2, and 3, the �gure shows
the state of the environment (s), the aspira-
tion level as determined by aspiration track-
ing (ξt), the maximum q∗-value in the cur-
rent state (maxa q∗(a∣st)), and the action se-
lected by the agent (a).

Figure 6.8 summarizes the episode just described. �e satis�cing agent al-
ways selected action a2 and thus followed an optimal policy. Of course, an op-
timal policy would also be obtained by following the greedy policy. However,
the greedy policy requires more e�ort than the satis�cing policy to compute the
optimal policy, as described next
In any given state s, the greedy policy needs to compute both action values;

its expected e�ort for a single decision is thus f (π∗ , s) = 2.�e satis�cing policy
requires an e�ort of 1 if it �rst considers a2, and an e�ort of 2 if it �rst considers
a1 (and thus has to consider a2 as well). �e expected e�ort required by the
satis�cing policy is thus f (π̃, s) = 0.5 × 1 + 0.5 × 2 = 1.5. Because in both cases
the agent makes three such decisions, the expected episode e�ort for the greedy
policy is given by F(π∗) = 3 × 2 = 6 and the expected episode e�ort for the

110

satis�cing policy is given by F(π̃) = 3 × 1.5 = 4.5. In this example, satis�cing
yields a 25% reduction of expected e�ort. Notice that the reduction in e�ort
would be larger if the MDP had a larger action space.13

13 For example, consider the toy MDP shown
in Figure 6.6, but with an enlarged action set
that adds 98 “clones” of action a2 to the ex-
isting actions a1 and a2 . �is would result in
a total action set size of ∣A∣ = 100 and thus
an expected e�ort per decision of f (π∗) =

100 for the greedy policy, whereas a satis�c-
ing policy using aspiration tracking would re-
quire an expected e�ort of f (π̃) = (99 × 1 +
2 × 1)/100 = 1.01, corresponding to a 98.99%
decrease in expected e�ort.

In short, using aspiration tracking in every time step yielded the same (op-
timal) quality as the greedy policy but required strictly less expected e�ort. Put
di�erently, satis�cing was a Pareto improvement on the greedy policy across the
entire sequential decision process.

In this particular example, the aspiration tracking rule is indeed able to cor-
rectly estimate the maximum q-value in every step,14 which leads to a Pareto- 14 Compare the third and fourth lines in Fig-

ure 6.8.improvement on the greedy policy in every time step (via�eorem 2), and thus
to the long-term Pareto improvement just described.
In the following section, I will provide conditions under which this long-

term Pareto improvement is guaranteed to hold. I will also provide a di�erent
toy example in which these conditions are not met and where, consequently,
aspiration tracking does not lead to such strong results.

6.6 long-term pareto improvement by aspiration tracking .

Let S∗ denote the set of relevant states, that is, all non-terminal states that have
a positive visitation probability under any optimal policy. Furthermore, let

µ ∶= min
s∈S∗ ∣A(s)∣

denote theminimumsize of all state-speci�c action sets across all relevant states.

�eorem 3 (Long-term Pareto improvement). Consider a deterministic
MDP and assume that the optimal action-value function q∗ is known. Let
π∗ denote the greedy policy with respect to q∗. Furthermore, let π̃ denote
a satis�cing policy with respect to q∗ that uses aspiration tracking.�en,
a. the satis�cing policy π̃ is an optimal policy, and

b. the total expected e�ort of the satis�cing policy can be upper-bounded
as follows:

F(π̃) ≤ µ + 1
2µ

F(π∗). (6.5)

Equality in Eq. 6.5 is attained if and only if all relevant state-dependent
action sets have the same size (∣A(s)∣ = µ for all s ∈ S∗) and there
is exactly one value-maximizing action in every relevant state (that is,∣ argmaxa∈A(s) q(a∣s)∣ = 1 for all s ∈ S∗).

Proof of �eorem 3. We�rst prove that the aspiration level in any time step
t is equal to themaximum q∗-value in state st .�at is, we aim to show that

satisficing policies in markov decision processes 111

ξt = maxa
q∗(a∣st) (6.6)

for all t. For t = 0, Equation 6.6 is true by de�nition of the aspiration
tracking adaption rule, that is, ξ0 = maxa q∗(a∣s0). We now show that if
Eq. 6.6 holds true for a time step t ≥ 0, then it also holds for t + 1. In
time step t, the satis�cing agent selects a value-maximizing action at ∈
argmaxa q∗(a∣st), receives reward rt , and observes the new state st+1.�e
new aspiration level in time step t + 1 is given by

ξt+1 = ξt − rt

γ

= maxa q∗(a∣st) − rt

γ

= q∗(at ∣st) − rt

γ
Because at ∈ argmaxa q∗(a∣st).

= E[Rt + γmaxa′ q∗(St+1∣a′)∣St = st ,At = at] − rt

γ
By the Bellman equation.

= rt + γmaxa′ q∗(a′∣st+1) − rt

γ
By assumption of a deterministic transition
model.= max

a′
q∗(a′∣st+1).

By induction it follows that Eq. 6.6 holds true for all time steps t. It follows
that the satis�cing policy π̃ chooses a value-maximizing action in every
time step, and is thus an optimal policy. �is concludes what was to be
shown for part a.
Now to part b. According to Lemma 1, the e�ort required by π̃ in time

step t is given by e(π̃, st) = ∣A(s t)∣+1
ñ(s t)+1 , where ñ(st) ≥ 1 is the number of sat-

isfactory actions in state st . �e number of satisfactory actions is equal to
or greater than one in every state because there is always at least one value-
maximizing action (according to Equation 6.6). We now compare the total
e�orts of the satis�cing policy π̃ and the greedy policy π∗ with each other.
Recall that the total e�ort of a policy π is given by the expected sum of
e�orts across the entire episode, given by F(π) = Ea t∼π(s t)[∑∞t=0 e(π, st)],
where the expectation is taken over possible trajectories under π. Note that
both π∗ and π̃ are optimal policies.�erefore, the distributions of trajecto-
ries produced by these policies are the same (using theminor technical as-
sumption that if there is more than one value-maximizing action in a state,
the policy is to select uniformly randomly among all value-maximizing ac-

112

tions).�e total e�ort of the satis�cing policy is then given by

F(π̃) = Ea t∼π̃(s t)[∞∑
t=0 e(π̃, st)]

= Ea t∼π̃(s t)[∞∑
t=0

∣A(st)∣ + 1
ñ(st) + 1]

≤ Ea t∼π̃(s t)[∞∑
t=0

∣A(st)∣ + 1
2

] Using that ñ(st) ≥ 1 for all st ∈ S∗.

= Ea t∼π̃(s t)[∞∑
t=0

∣A(st)∣(1 + 1∣A(s t)∣)
2

]
≤ Ea t∼π̃(s t)[∞∑

t=0
∣A(st)∣(1 + 1

µ)
2

] Using that µ = mins t∈S∗ ∣A(s)∣.

= Ea t∼π̃(s t)[∞∑
t=0 ∣A(st)∣ µ + 12µ

]
= µ + 1
2µ

Ea t∼π̃(s t)[∞∑
t=0 ∣A(st)∣]

= µ + 1
2µ

Ea t∼π∗(s t)[∞∑
t=0 ∣A(st)∣] Using that both π̃ and π∗ are optimal policies

and their expected trajectories therefore the
same.= µ + 1

2µ
F(π∗),

which was to be shown. Equality holds only if ñ(st) = 1 and ∣A(st)∣ = µ
(that is, all state-speci�c action sets have the same size) for all st ∈ S∗.
�eorem 3 shows that an aspiration-tracking satis�cing policy with respect

to an optimal value function is an optimal policy. Moreover, in any non-trivial15 15 A state is considered trivial if its action set
contains only one action and there is thus no
decision to be made. A non-trivial MDP is
an MDP with at least one non-trivial relevant
state.

MDP, the satis�cing policy requires strictly less expected episode e�ort than
the greedy policy, that is, F(π̃) < F(π∗). In particular, if no relevant state is
trivial, then µ ≥ 2, and consequently, F(π̃) ≤ 3

4F(π∗).�e relative advantage of
the satis�cing policy’s e�ort increases as the minimum size of state-dependent
action sets, µ, increases.

�e strong results of�eorem 3 were obtained under the following twomain
assumptions: �rst, the MDP is deterministic; and second, the optimal value
function is known. �ese assumptions were met in Example 1, which was dis-
cussed in the previous section. In what follows, we consider situations in which
at least one of these assumptions is not met. We �rst provide an example of a
stochastic MDP, where aspiration tracking fails to produce an optimal policy.
Later in Section 6.8.2 we then consider a case when the optimal value function
is approximated by a neural network.

▸ Example 2: Failure of aspiration tracking in stochastic MDPs.
Consider the stochastic MDP shown in Figure 6.9. Similar to what we did in
Example 1, we compare quality and e�ort of the greedy policy and a satis�cing
policy using aspiration tracking. Both policies are de�ned with respect to the

satisficing policies in markov decision processes 113

a0

<latexit sha1_base64="1sLmG0MNSqgFMZKiWj1+dVlGt7s=">AAACN3icdVDLSgMxFM34tr5aXQoSrIKrkqnW1p3gxo1Qqa1CO5RMmqmhmWRIMkId5hPc6rf4Ka7ciVv/wExboRU9EDic+8i5x4840wahN2dufmFxaXllNbe2vrG5lS9st7SMFaFNIrlUdz7WlDNBm4YZTu8iRXHoc3rrDy6y+u0DVZpJcWOGEfVC3BcsYAQbKzV0F3XzRVRC6LR8VoUZqVbKtYy4x5UzBF2rZCiCCerdgrPX6UkSh1QYwrHWbRdFxkuwMoxwmuY6saYRJgPcp21LBQ6p9pKR1xQeWqUHA6nsEwaO1OmJBIdaD0PfdobY3OvftUz8q9aOTVDzEiai2FBBxh8FMYdGwuxw2GOKEsOHlmCimPUKyT1WmBgbz8ymbDcPvOSKCZtRXck0dwinbWQNEX6UM6cmV6JhfUue2kR/YoP/k1a55FZK6PqkeH4wyXYF7IJ9cARcUAXn4BLUQRMQ0AdP4Bm8OK/Ou/PhfI5b55zJzA6YgfP1DeR6rJM=</latexit> s�

<latexit sha1_base64="WIM+9RWIvF4GvFxToCgtdv7xNms=">AAACN3icdVDLSgMxFE18W5/VpSDBKrgqmWpt3Qlu3AiV2iq0Q8mkmRrMJEOSEerQT3Cr3+KnuHInbv0DM22FVvRA4HDuI+eeIBbcWIzf4Mzs3PzC4tJybmV1bX1jM7/VNCrRlDWoEkrfBsQwwSVrWG4Fu401I1Eg2E1wf57Vbx6YNlzJa9uPmR+RnuQhp8Q6qW46pc5mARcxPimdVlBGKuVSNSPeUfkUI88pGQpgjFonD3fbXUWTiElLBTGm5eHY+inRllPBBrl2YlhM6D3psZajkkTM+OnQ6wAdOKWLQqXdkxYN1cmJlETG9KPAdUbE3pnftUz8q9ZKbFj1Uy7jxDJJRx+FiUBWoexw1OWaUSv6jhCqufOK6B3RhFoXz9SmbLcI/fSSS5dRTatB7gBN2sgaYvKopk5NL2Xd+VZi4BL9iQ39T5qlolcu4qvjwtn+ONslsAP2wCHwQAWcgQtQAw1AQQ88gWfwAl/hO/yAn6PWGTie2QZTgF/f6ByslQ==</latexit> s�

<latexit sha1_base64="r+MweehaiBpQs/mjZSSUAHRSy+Q=">AAACN3icdVDLSgMxFE18W9+6FCRYC65KplqrO8GNG6GirYV2KJk0U4OZZEgyQh36CW71W/wUV+7ErX9gohWs6IHA4dxHzj1RKrixGD/Dicmp6ZnZufnCwuLS8srq2nrTqExT1qBKKN2KiGGCS9aw3ArWSjUjSSTYVXRz4utXt0wbruSlHaQsTEhf8phTYp10Ybp73dUiLmN8UDmqIU9q1cqhJ8Fe9QijwCkeRTBCvbsGtzo9RbOESUsFMaYd4NSGOdGWU8GGhU5mWEroDemztqOSJMyE+afXISo5pYdipd2TFn2qPydykhgzSCLXmRB7bX7XvPhXrZ3Z+DDMuUwzyyT9+ijOBLIK+cNRj2tGrRg4Qqjmziui10QTal08Y5v8bhGH+RmXLqO6VsNCCf204RtScqfGTs3P5IXzrcTQJfodG/qfNCvloFrG5/vF451RtnNgE2yDXRCAGjgGp6AOGoCCPrgHD+ARPsEX+Arfvlon4GhmA4wBvn8A6e2slg==</latexit> s�

<latexit sha1_base64="/ou0SDmkI4hraMuQAkv+a1El2Ec=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqjntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf38V1rII=</latexit> a�

a0<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a�

a0
a0<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a�

a0<latexit sha1_base64="/ou0SDmkI4hraMuQAkv+a1El2Ec=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqjntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf38V1rII=</latexit> a�

a0
a0<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a�

a0<latexit sha1_base64="/ou0SDmkI4hraMuQAkv+a1El2Ec=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqjntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf38V1rII=</latexit> a�

<latexit sha1_base64="XSPKK+qB4h7XOtyyo28FGCU+pFs=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqM9Xadldw40ao1FqhDiWTZmowkwxJRqhDP8Gtfouf4sqduPUPTGyFVvRA4HDuI+eeMOFMG897hTOzc/MLi7ml/PLK6tr6xubWlZapIrRFJJfqOsSaciZoyzDD6XWiKI5DTtvh3amrt++p0kyKSzNIaBDjvmARI9hYqam7x92Nglf0vJNSrYIcqZRLVUf8o3LNQ75VHApgjEZ3E+7e9CRJYyoM4Vjrju8lJsiwMoxwOszfpJommNzhPu1YKnBMdZB9ex2iA6v0UCSVfcKgb3VyIsOx1oM4tJ0xNrf6d82Jf9U6qYmqQcZEkhoqyOijKOXISOQORz2mKDF8YAkmilmviNxihYmx8Uxtcrt5FGTnTNiMGkoO8wdo0oZrSPCDnDo1OxdN61vyoU30Jzb0P7kqFf1y0bs4LtT3x9nmwA7YA4fABxVQB2egAVqAgD54BE/gGb7AN/gOP0atM3A8sw2mAD+/AOu+rJc=</latexit> s�

<latexit sha1_base64="zu6zYyJzuqX/mXhUNSdjbJC+G/A=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqrntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf3+ZLrJQ=</latexit>s�

0.5

0.5

<latexit sha1_base64="UilULKcCzQ29ntO9Zc74ucKogvw=">AAACOXicdVDLSgMxFM34rPXV6lKQYC24KjNFqy6Eghs3hYr2Ae1QMmmmDc0kQ5IR6jDf4Fa/xS9x6U7c+gNm2gqt6IXA4Zx7b849Xsio0rb9Zi0tr6yurWc2sptb2zu7ufxeU4lIYtLAggnZ9pAijHLS0FQz0g4lQYHHSMsbXad664FIRQW/1+OQuAEacOpTjLShGhJeQbuXKzgle1LQLpUdp1K5NGDG/EgFMKt6L28ddvsCRwHhGjOkVMexQ+3GSGqKGUmy3UiREOERGpCOgRwFRLnxxG0Ci4bpQ19I87iGE3Z+IkaBUuPAM50B0kP1W0vJv7ROpP0LN6Y8jDThePqRHzGoBUxPh30qCdZsbADCkhqvEA+RRFibgBY2pbuZ78Y1yk1KdSmSbBHO20gbQvQoFk6Na/zO+BYsmU/0f9Asl5yzkn17Wqgez7LNgANwBE6AA85BFdyAOmgADCh4As/gxXq13q0P63PaumTNZvbBQllf3yKurJ4=</latexit>r = �

<latexit sha1_base64="OEJQeLhFnWGN+ooSfU3tQoZItsg=">AAACO3icdVDLSgMxFM3UV62vVpeCBGvBjWWmaNWFUHDjplDRPqAdSibNtKGZZEgyQh36EW71W/wQ1+7ErXszbYVW9ELgcM69N+ceL2RUadt+s1JLyyura+n1zMbm1vZONrfbUCKSmNSxYEK2PKQIo5zUNdWMtEJJUOAx0vSG14nefCBSUcHv9SgkboD6nPoUI22opoRX8MSxu9m8U7QnBe1iyXHK5UsDZsyPlAezqnVz1kGnJ3AUEK4xQ0q1HTvUboykppiRcaYTKRIiPER90jaQo4AoN574HcOCYXrQF9I8ruGEnZ+IUaDUKPBMZ4D0QP3WEvIvrR1p/8KNKQ8jTTiefuRHDGoBk+Nhj0qCNRsZgLCkxivEAyQR1iaihU3Jbua7cZVyk1NNinGmAOdtJA0hehQLp8ZVfmd8CzaeT/R/0CgVnbOifXuarxzNsk2DfXAIjoEDzkEF3IAaqAMMhuAJPIMX69V6tz6sz2lryprN7IGFsr6+ARpYrRA=</latexit>r = −��

Figure 6.9: Episodic MDP with �ve states
S = {s0 , s1 , s2 , s3 , s4} and two actions A =

{a1 , a2} available in every non-terminal state.
�e state s0 is the starting state; s2 and s4 are
the terminal states. If a2 is selected in state
s0 , the environment “�ips a coin”: with prob-
ability of 0.5, the agent transitions to s1 and re-
ceives a reward of r = 0; andwith a probability
of 0.5, the agent transitions to s3 and receives
a reward of r = −10. A reward of r(s, a) =

−1 is received for all other state-action pairs
{(s, a) ∈ S × A ∣ (s, a) ≠ (s0 , a2)}. �e
temporal discount factor is given by γ = 1.

optimal action-value function q∗, which is shown in Figure 6.10 and assumed
to be known to the agent.

<latexit sha1_base64="soWqB8dq+ifM5TugeGkqpE1j36c=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24sWSqte1OcONGqI/aQjuUTJppg5lkSDJCHfoHbvVb/BU37sStn2BGK1jRA4HDuY+ce/yIM20QenYyM7Nz8wvZxdzS8srq2np+41rLWBHaJJJL1faxppwJ2jTMcNqOFMWhz2nLvzlJ661bqjST4sqMIuqFeCBYwAg2VrrYd3vrBVRC6Khcr8KUVCvlWkrcg0odQdcqKQpggkYv72x3+5LEIRWGcKx1x0WR8RKsDCOcjnPdWNMIkxs8oB1LBQ6p9pJPq2NYtEofBlLZJwz8VH9OJDjUehT6tjPEZqh/11Lxr1onNkHNS5iIYkMF+fooiDk0EqZ3wz5TlBg+sgQTxaxXSIZYYWJsOlOb0t088JIzJmxEDSXHuSL8aSNtiPCdnDo1OROX1rfkY5vod2zwf3JdLrmVEjo/LBzvTrLNgi2wA/aAC6rgGJyCBmgCAgJwDx7Ao/PkvDivzttXa8aZzGyCKTjvH5Q8q+U=</latexit>−�

<latexit sha1_base64="ugHvaP651opcVLChfkQEdXJs1Ek=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24scyM1rY7wY0boT5qC+1QMmmmDWaSIckIdZg/cKvf4q+4cSdu/QQzWsGKHggczn3k3ONHjCpt289WbmZ2bn4hv1hYWl5ZXVsvblwrEUtMWlgwITs+UoRRTlqaakY6kSQo9Blp+zcnWb19S6Sigl/pcUS8EA05DShG2kgX+25/vWRXbPvIbdRgRmpVt54R56DasKFjlAwlMEGzX7S2ewOB45BwjRlSquvYkfYSJDXFjKSFXqxIhPANGpKuoRyFRHnJp9UUlo0ygIGQ5nENP9WfEwkKlRqHvukMkR6p37VM/KvWjXVQ9xLKo1gTjr8+CmIGtYDZ3XBAJcGajQ1BWFLjFeIRkghrk87Upmw3C7zkjHITUVOKtFCGP21kDRG6E1OnJmf80vgWLDWJfscG/yfXbsWpVuzzw9Lx7iTbPNgCO2APOKAGjsEpaIIWwCAA9+ABPFpP1ov1ar19teasycwmmIL1/gGWDavm</latexit>−�
<latexit sha1_base64="XdOZlSMajXyr8slnuffR9IaDS7g=">AAACNnicdVDLSgMxFM34tr5aXQoSrAU3lplqW90JbtwU6qMPaIeSSTNtaCYZkoxQh/6BW/0Wf8WNO3HrJ5hpK7SiBwKHcx8593gho0rb9pu1sLi0vLK6tp7a2Nza3klndutKRBKTGhZMyKaHFGGUk5qmmpFmKAkKPEYa3uAqqTceiFRU8Hs9DIkboB6nPsVIG+n2pNRJZ+28bZcKF2WYkHKxcJ4Q57R4YUPHKAmyYIpqJ2MdtLsCRwHhGjOkVMuxQ+3GSGqKGRml2pEiIcID1CMtQzkKiHLjsdURzBmlC30hzeMajtXZiRgFSg0Dz3QGSPfV71oi/lVrRdo/d2PKw0gTjicf+RGDWsDkbtilkmDNhoYgLKnxCnEfSYS1SWduU7Kb+W5codxEVJVilMrBWRtJQ4gexdypcYXfGd+CjUyiP7HB/0m9kHeKefvmLHt5NM12DeyDQ3AMHFAGl+AaVEENYOCDJ/AMXqxX6936sD4nrQvWdGYPzMH6+gadUavq</latexit>−�

<latexit sha1_base64="2dyZRpkZdTnU3x3kFVStH8rpCj4=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24scxU67Q7wY0boT5qC+1QMmmmDWaSIckIdZg/cKvf4q+4cSdu/QQzWsGKHggczn3k3ONHjCpt289WbmZ2bn4hv1hYWl5ZXVsvblwrEUtMWlgwITs+UoRRTlqaakY6kSQo9Blp+zcnWb19S6Sigl/pcUS8EA05DShG2kgX+25/vWRXbPuo2nBhRtxatZ4R56DWsKFjlAwlMEGzX7S2ewOB45BwjRlSquvYkfYSJDXFjKSFXqxIhPANGpKuoRyFRHnJp9UUlo0ygIGQ5nENP9WfEwkKlRqHvukMkR6p37VM/KvWjXVQ9xLKo1gTjr8+CmIGtYDZ3XBAJcGajQ1BWFLjFeIRkghrk87Upmw3C7zkjHITUVOKtFCGP21kDRG6E1OnJmf80vgWLDWJfscG/yfX1YpTq9jnh6Xj3Um2ebAFdsAecIALjsEpaIIWwCAA9+ABPFpP1ov1ar19teasycwmmIL1/gGfIqvr</latexit>−�<latexit sha1_base64="/ou0SDmkI4hraMuQAkv+a1El2Ec=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqjntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf38V1rII=</latexit> a�

<latexit sha1_base64="bmepVKlxt2ZyQDkCO4ucRSSVDbc=">AAACN3icdVDLSgMxFE181vrWpSDBKrgqmWqt3RXcuClUtCrUoWTSTA1mkiHJCHXoJ7jVb/FTXLkTt/6BiVawogcCh3MfOfdEqeDGYvwMJyanpmdmC3PF+YXFpeWV1bVzozJNWZsqofRlRAwTXLK25Vawy1QzkkSCXUQ3R75+ccu04Uqe2UHKwoT0JY85JdZJp6Rb6a6UcBnjg0q9hjypVSuHngR71TpGgVM8SmCEVncVbl71FM0SJi0VxJhOgFMb5kRbTgUbFq8yw1JCb0ifdRyVJGEmzD+9DtGOU3ooVto9adGn+nMiJ4kxgyRynQmx1+Z3zYt/1TqZjQ/DnMs0s0zSr4/iTCCrkD8c9bhm1IqBI4Rq7rwiek00odbFM7bJ7xZxmDe5dBm1tBoWd9BPG74hJXdq7NS8KU+dbyWGLtHv2ND/5LxSDqplfLJfamyPsi2ADbAFdkEAaqABjkELtAEFfXAPHsAjfIIv8BW+fbVOwNHMOhgDfP8Ax0asgw==</latexit>a�

<latexit sha1_base64="zu6zYyJzuqX/mXhUNSdjbJC+G/A=">AAACN3icdVDLSgMxFM34tr5aXQoSrAVXZaZaW3eCGzdCpfYB7VAyaaYNzSRDkhHqMJ/gVr/FT3HlTtz6B2baCq3ogcDh3EfOPV7IqNK2/WYtLa+srq1vbGa2tnd297K5/aYSkcSkgQUTsu0hRRjlpKGpZqQdSoICj5GWN7pO660HIhUV/F6PQ+IGaMCpTzHSRqqrntPL5u2ibV+ULiswJZVyqZoS56x8aUPHKCnyYIZaL2cddfsCRwHhGjOkVMexQ+3GSGqKGUky3UiREOERGpCOoRwFRLnxxGsCC0bpQ19I87iGE3V+IkaBUuPAM50B0kP1u5aKf9U6kfarbkx5GGnC8fQjP2JQC5geDvtUEqzZ2BCEJTVeIR4iibA28SxsSncz341vKTcZ1aRIMgU4byNtCNGjWDg1vuV141uwxCT6Exv8nzRLRadctO/O81cns2w3wCE4BqfAARVwBW5ADTQABgPwBJ7Bi/VqvVsf1ue0dcmazRyABVhf3+ZLrJQ=</latexit>s�
<latexit sha1_base64="1sLmG0MNSqgFMZKiWj1+dVlGt7s=">AAACN3icdVDLSgMxFM34tr5aXQoSrIKrkqnW1p3gxo1Qqa1CO5RMmqmhmWRIMkId5hPc6rf4Ka7ciVv/wExboRU9EDic+8i5x4840wahN2dufmFxaXllNbe2vrG5lS9st7SMFaFNIrlUdz7WlDNBm4YZTu8iRXHoc3rrDy6y+u0DVZpJcWOGEfVC3BcsYAQbKzV0F3XzRVRC6LR8VoUZqVbKtYy4x5UzBF2rZCiCCerdgrPX6UkSh1QYwrHWbRdFxkuwMoxwmuY6saYRJgPcp21LBQ6p9pKR1xQeWqUHA6nsEwaO1OmJBIdaD0PfdobY3OvftUz8q9aOTVDzEiai2FBBxh8FMYdGwuxw2GOKEsOHlmCimPUKyT1WmBgbz8ymbDcPvOSKCZtRXck0dwinbWQNEX6UM6cmV6JhfUue2kR/YoP/k1a55FZK6PqkeH4wyXYF7IJ9cARcUAXn4BLUQRMQ0AdP4Bm8OK/Ou/PhfI5b55zJzA6YgfP1DeR6rJM=</latexit> s�

<latexit sha1_base64="UXZTlNo7PUvqDIfm46H7St0SDis=">AAACPHicdVDLSgMxFM34rPVVdSlIsBZclZlqrd0JbtwIFa0ttEPJpJk2NJOMSUaow/yEW/0W/8O9O3Hr2kQrWNEDgcO5j5x7gphRpV332ZmZnZtfWMwt5ZdXVtfWCxub10okEpMmFkzIdoAUYZSTpqaakXYsCYoCRlrB6NTWW7dEKir4lR7HxI/QgNOQYqSN1L7ppV2kdNYrFN2y6x5V6jVoSa1aObbEO6jWXegZxaIIJmj0Npydbl/gJCJcY4aU6nhurP0USU0xI1m+mygSIzxCA9IxlKOIKD/9NJzBklH6MBTSPK7hp/pzIkWRUuMoMJ0R0kP1u2bFv2qdRIfHfkp5nGjC8ddHYcKgFtBeD/tUEqzZ2BCEJTVeIR4iibA2GU1tsrtZ6KfnlJugGlJk+RL8acM2xOhOTJ2anvNL41swm+h3bPB/cl0pe9Wye3FYPNmbZJsD22AX7AMP1MAJOAMN0AQYMHAPHsCj8+S8OK/O21frjDOZ2QJTcN4/AAvbry8=</latexit>q∗ <latexit sha1_base64="r+MweehaiBpQs/mjZSSUAHRSy+Q=">AAACN3icdVDLSgMxFE18W9+6FCRYC65KplqrO8GNG6GirYV2KJk0U4OZZEgyQh36CW71W/wUV+7ErX9gohWs6IHA4dxHzj1RKrixGD/Dicmp6ZnZufnCwuLS8srq2nrTqExT1qBKKN2KiGGCS9aw3ArWSjUjSSTYVXRz4utXt0wbruSlHaQsTEhf8phTYp10Ybp73dUiLmN8UDmqIU9q1cqhJ8Fe9QijwCkeRTBCvbsGtzo9RbOESUsFMaYd4NSGOdGWU8GGhU5mWEroDemztqOSJMyE+afXISo5pYdipd2TFn2qPydykhgzSCLXmRB7bX7XvPhXrZ3Z+DDMuUwzyyT9+ijOBLIK+cNRj2tGrRg4Qqjmziui10QTal08Y5v8bhGH+RmXLqO6VsNCCf204RtScqfGTs3P5IXzrcTQJfodG/qfNCvloFrG5/vF451RtnNgE2yDXRCAGjgGp6AOGoCCPrgHD+ARPsEX+Arfvlon4GhmA4wBvn8A6e2slg==</latexit> s�

<latexit sha1_base64="soWqB8dq+ifM5TugeGkqpE1j36c=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24sWSqte1OcONGqI/aQjuUTJppg5lkSDJCHfoHbvVb/BU37sStn2BGK1jRA4HDuY+ce/yIM20QenYyM7Nz8wvZxdzS8srq2np+41rLWBHaJJJL1faxppwJ2jTMcNqOFMWhz2nLvzlJ661bqjST4sqMIuqFeCBYwAg2VrrYd3vrBVRC6Khcr8KUVCvlWkrcg0odQdcqKQpggkYv72x3+5LEIRWGcKx1x0WR8RKsDCOcjnPdWNMIkxs8oB1LBQ6p9pJPq2NYtEofBlLZJwz8VH9OJDjUehT6tjPEZqh/11Lxr1onNkHNS5iIYkMF+fooiDk0EqZ3wz5TlBg+sgQTxaxXSIZYYWJsOlOb0t088JIzJmxEDSXHuSL8aSNtiPCdnDo1OROX1rfkY5vod2zwf3JdLrmVEjo/LBzvTrLNgi2wA/aAC6rgGJyCBmgCAgJwDx7Ao/PkvDivzttXa8aZzGyCKTjvH5Q8q+U=</latexit>−�

<latexit sha1_base64="ugHvaP651opcVLChfkQEdXJs1Ek=">AAACNnicdVDLSgMxFM3UV63P6lKQYC24scyM1rY7wY0boT5qC+1QMmmmDWaSIckIdZg/cKvf4q+4cSdu/QQzWsGKHggczn3k3ONHjCpt289WbmZ2bn4hv1hYWl5ZXVsvblwrEUtMWlgwITs+UoRRTlqaakY6kSQo9Blp+zcnWb19S6Sigl/pcUS8EA05DShG2kgX+25/vWRXbPvIbdRgRmpVt54R56DasKFjlAwlMEGzX7S2ewOB45BwjRlSquvYkfYSJDXFjKSFXqxIhPANGpKuoRyFRHnJp9UUlo0ygIGQ5nENP9WfEwkKlRqHvukMkR6p37VM/KvWjXVQ9xLKo1gTjr8+CmIGtYDZ3XBAJcGajQ1BWFLjFeIRkghrk87Upmw3C7zkjHITUVOKtFCGP21kDRG6E1OnJmf80vgWLDWJfscG/yfXbsWpVuzzw9Lx7iTbPNgCO2APOKAGjsEpaIIWwCAA9+ABPFpP1ov1ar19teasycwmmIL1/gGWDavm</latexit>−�

Figure 6.10: Optimal value function q∗(s, a)
for the toy MDP shown in Figure 6.9.

�e optimal policy is to select action a2 in every state. Depending on the
outcome of the coin-�ip a�er taking a2 in state s0, the agent either follows the
trajectory s0 → s1 → s2 and receives a return of 0−1 = −1 or follows the trajectory
s0 → s3 → s4 and receives a return of −10 − 1 = −11. �e expected return of an
optimal policy is therefore v∗(s0) = −6. Regardless of the outcome of the coin-
�ip, the greedy agent makes two decisions among two actions each; the episode
e�ort of the greedy agent is therefore given by F(π∗) = 2 + 2 = 4.
Now to the satis�cing agent that uses aspiration tracking.�e initial aspira-

tion level is set to ξ0 = v∗(s0) = −6.�e satis�cing agent therefore starts o� just
like the greedily behaving agent and selects the optimal action a2 (because a1 is
not satisfactory).
We next consider both outcomes of the coin-�ip in turn. If the agent tran-

sitions to state s3 and thus receives a reward of r0 = −10, the new aspiration
level is given by ξ1 = −6 − (−10) = 4. �e maximum action-value in s3 is
q∗(s3 , a2) = −1, which is smaller than the aspiration level ξ1. �e satis�cing
policy therefore falls back to the greedy policy, selecting the optimal action a2.
In this case, the aspiration-tracking satis�cing agent still follows an optimal pol-
icy and requires less expected episode e�ort than the greedy agent.16 16 Speci�cally, the expected episode e�ort

of the satis�cing policy would be given by
F(π̃) = f (π̃, s0) + f (π̃, s1) = 1.5 + 2 = 3.5 <
4 = F(π∗).

However, if the coin-�ip makes the agent transition to s1, the agent receives
a reward of r0 = 0. In this case the new aspiration level is ξ1 = −6− 0 = −6.�is
aspiration level is lower than both action-values in state s1 (see middle column
in Figure 6.10). �e satis�cing agent therefore selects whichever action is con-
sidered �rst. If that �rst action happens to be a1, the satis�cing agent no longer
follows an optimal policy and receives a lower return than the greedy policy. To
make things worse, the total episode e�ort could become higher than the one
required by the greedy policy because the agent ends up having to make more
decisions.

Example 2 showed how satis�cing with aspiration tracking can result in sub-
optimal behavior in stochastic MDPs. In the following section I focus on the

114

other important assumption in�eorem 3: the availability of an exact optimal
value function.

6.7 value tracking

�e MDPs used to model many real-world applications have too many states
or actions, or both, to learn and maintain a tabular value function. �e stan-
dard solution to this problem is to approximate the action-value function using
a parametrized mathematical function q̂θ(s, a), where θ is a vector of parame-
ters. Learning then consists of �nding a set of parameters such that q̂θ(s, a) is
as close as possible to q∗(s, a) for all state-action pairs.
Such an approximation is hardly ever perfect—and it usually does not have

to be. Small approximation errors do not pose a problem for the greedy policy
as long as the approximated value of an optimal action is still larger than the
approximated values of all non-optimal actions (and the greedy policy there-
fore still correctly identi�es a value-maximizing action). For satis�cing with
aspiration tracking, however, a small approximation error in the evaluation of
the starting state can negatively a�ect all future decisions.�is is because every
later aspiration level is a function of the initial aspiration level, which is set to
the value of the initial state, ξ0 = v(s0).
For instance, in Example 1 in Section 6.5, if the optimal value of the initial

state s0 was estimated to be, say, ξ0 = v̂(s0) = −2.9 (the correct value is −3),
then the aspiration levels in future states (ξ1 = −1.9 and ξ2 = −0.9) would be
higher than the maximum q-values in the respective states (qmax(s1) = −2 and
qmax(s2) = −1). As a result, the satis�cing policy would fall back to the greedy
policy and thus lose the improvements that would be guaranteed by�eorem 3
if the initial value estimate was correct. A severe under-estimation is arguably
even worse: if the initial value was estimated to be lower than any true action
value in the initial state (for example, v̂(s0) = −4.1), the satis�cing policy would
be equivalent to a random policy in the �rst step (and possibly in later steps, as
well).
To break the dependence of all aspiration levels on the value estimate of the

initial state, I propose an alternative aspiration adaption rule called value track-
ing.

De�nition 5 (Value tracking). �e value tracking aspiration adaption rule
with respect to a value function q is de�ned by the recursive function

ξt = q(st−1 , at−1) − rt−1 , for t > 0, (6.7)

and initial aspiration level ξ0 = v(s0).
In value tracking, the new aspiration level is simply given by the di�erence be-
tween the value of the action chosen in the previous state, given by q(st−1 , at−1),
and the reward obtained in the current decision, rt−1. Just like aspiration track-

satisficing policies in markov decision processes 115

ing, value tracking provides an unbiased estimate of the maximum q-value of
the current state based only on information from the previous time step. Unlike
aspiration tracking, however, the value-tracking update rule “re-bases” this es-
timate on the value estimate from the previous time step, rather than estimating
it based on the value estimate of the initial state value (and the streamof rewards
observed a�erwards). In doing so, value trackingmakes the bet that short-term
approximation errors are smaller than long-term, accumulated approximation
errors.
We will compare the aspiration tracking and value tracking update rules in

the experiments presented in the following sections. Before doing so, however,
we will introduce yet another aspiration adaption rule.

�is third rule is based on the observation that a severe over-estimation of
the maximum q-value in the current state has a qualitatively di�erent e�ect
compared to a severe under-estimation of that same value. Speci�cally, if the
aspiration level is strictly larger than qmax (no matter by howmuch), satis�cing
simply falls back to the greedy policy and thus yields optimal quality and re-
quires the same e�ort as the greedy policy across the entire episode. However,
for aspiration levels that strongly under-estimate qmax, satis�cing can result in
low-quality decision-making (in the worst case, uniformly random behavior)
and thus eventually even more e�ort across the entire episode than the greedy
policy.17 In other words, cost is an asymmetric function of estimation error. 17 Low aspiration levels can result in higher

total episode e�ort because even though the
e�ort in a single decision decreases with de-
creasing aspiration levels (Section 6.3.2), the
total number of decisions might increase by
following a non-optimal policy, as discussed
in Example 2 in Section 6.6.

�e valved value tracking update rule provides one (rather extreme) way of
taking this cost asymmetry into account.

De�nition 6 (Valved value tracking). �e valved value tracking aspiration
adaption rule is de�ned recursively by

ξt = max(q(st−1 , at−1) − rt−1 , ξt−1), for t > 0, (6.8)

and initial aspiration level ξ0 = v(s0).
Valved value tracking uses value tracking (Equation 6.7) only if the updated
value is higher than the current aspiration level, and sticks to the current es-
timate otherwise. Unlike previous aspiration level update rules, valved value
tracking does not, in general, provide an unbiased estimate of the maximum q-
value in the current state. Instead, valved value tracking is biased toward over-
estimating the maximum q-value in the current state. By consequence, in the
case of estimation error, valved value tracking is more likely to be rescued by
the “safety net” that is the greedy policy rather than falling all the way down and
ending up as a random policy.

6.8 experiments

�e objective of these experiments is two-fold. First, we aim to provide experi-
mental illustration for the theoretical results developed in the previous sections.

116

Second, we assess the performance of various aspiration adaption rules when
the assumptions of�eorem 3 are not met.

6.8.1 Macro-action gridworld: tabular value function and large action set

Here I compare the satis�cing policy with aspiration tracking to the greedy
policy in a gridworld domain with macro actions. Macro actions are �xed se-
quences of primitive (or atomic) actions.18 For example, themacro action “drink 18 Amarel (1968)

co�ee” could be divided into the sequence ofmore primitive (yet still quite high-
level) actions “move hand to co�ee cup”, “grab cup of co�ee”, “move hand to
mouth”, and “make drinking motion”.

�e use of macro actions allows the agent to abstract and focus on the im-
portant parts of the decision-making process (e.g., “getting su�cient ca�eine”
rather than “optimally grabbing a cup of co�ee”), and it usually results in fewer
decisions to bemade (and thus potentially reduced e�ort).�e downside, how-
ever, is that the action set ofmacro actions is usuallymuch larger than the action
set of primitive actions. �e number of possible macro actions is an exponen-
tial function of the length of the number of atomic actions used to compose the
macro action.19 Even moderately sized atomic action sets and macro-action 19 For k atomic actions, the number of di�er-

ent n-step macro actions is given by kn . For
example, for only k = 2 atomic actions “←”
and “→”, and n = 3 steps, the following 23 = 8
macro actions are available:
{←,←,←},
{→,←,←},
{←,→,←},
{←,←,→},
{→,→,←},
{→,←,→},
{←,→,→}, and
{→,→,→}.

lengths can result in huge action set sizes.

▸ The domain: Gridworld with macro actions. Figure 6.11 shows an
example state of an 8 × 8 gridworld environment with 4-step macro actions.
�e agent starts each episode in the bottom-le� corner.�e only terminal state
is the “gold state” in the top-right corner. Each macro action consists of a chain
of four primitive actions, which are given by the four cardinal directions. �e
action set size is ∣A(s)∣ = 44 = 256. �e �gure shows six macro actions. �e
agent receives a negative reward of r = −4 for every decision.�e agent receives
an additional reward of r = 16 upon arriving on the terminal state (where the
gold is).�e optimal episode return is v∗(s0) = 0.

a0

a64

a65

a84

a185

a195

Figure 6.11: 8×8 gridworld environment with
macro actions.

satisficing policies in markov decision processes 117

▸ Experimental setup. I measured episode e�ort and return of various value-
based policies. All policies were given access to the tabular optimal value func-
tion q∗. Speci�cally, we compared the satis�cing policy using aspiration track-
ing (and ξ0 = v∗(s0) = 0) to the ε-greedy policy for di�erent values of the
exploration parameter ε, including the random policy (ε = 1) and the greedy
policy (ε = 0). I do not show results for value tracking and valved value track-
ing because both rules are equivalent to aspiration tracking when the optimal
value function is given and the MDP is deterministic.

▸ Results. Figure 6.12 shows episode return as a function of the total episode ef-
fort (number of considered actions), averaged across 1000 episodes.�e greedy
policy required an e�ort of 1000 action considerations to reach the optimal re-
turn of 0. �e satis�cing policy considered, on average, 70 actions to reach the
same optimal return.

0 250 500 750 1000 1250

Number of considered actions

-150

-100

-50

0

R
et

u
rn

Greedy

Random

ε = 0.3
ε = 0.5

ε = 0.7

ε = 0.9

ε = 0.2
ε = 0.4

ε = 0.6

ε = 0.8

Satisficing
Figure 6.12: E�ort-quality trade-o�s for ξ-
satis�cing with aspiration tracking and ε-
greedy policies.

According to�eorem 3, the expected episode e�ort required by the satis�c-
ing policy in this environment should be at most around half the e�ort required
by the greedy policy, or F(π̃) ≤ 256+1

2×256F(π∗) ≈ 0.5F(π∗). Yet the results show
that the satis�cing policy did not even require a tenth of the greedy policy’s ef-
fort. �e upper bound is not tight in this case because there are ñ = 16 optimal
(and thus satisfactory) actions available in every state. �e bound in�eorem
3 assumes the “worst case” (in terms of expected improvement on the greedy
policy) that every state has only ñ = 1 optimal action.

6.8.2 Lunar-Lander: Approximated value functions.

In this subsection I analyze the satis�cing policy in a domain where the state
space is too large for a tabular value representation to be feasible. �e action-
value function is instead approximated by an arti�cial deep neural network. I

118

compare di�erent aspiration level update rules to each other and to the greedy
policy.

Figure 6.13: Lunar-Lander environment. We
used the LunarLander-v2 environment avail-
able in OpenAI gym (Brockman et al., 2016).

▸ Domain: Lunar Lander. Figure 6.13 shows one frame of the Lunar-Lander
environment.�e agent controls the purple space ship and tries to land it safely
on the moon, on the landing pad between the two yellow �agpoles. For a land-
ing to be safe, the space ship should not be too fast and reasonably leveled (so
as to land on the space ship’s feet rather than on its “back”). An episode ends if
the space ship lands safely and comes to rest or if the space ship crashes.

�e agent can control the space ship using four discrete actions: “�re main
engine” (resulting in upwards moving force), “le� orientation engine”, “right
orientation engine”, and “do nothing”. To guide its actions, the agent observes
an 8-dimensional continuous state vector, which contains information about
the position, velocity and orientation of the space ship. �e initial state varies
across episodes.

�e agent receives small positive rewards for getting closer to the landing
pad20 and, conversely, receives negative rewards if moving away from (or land- 20 �e agent receives a total reward between

100 and 140 for moving relatively directly
from the starting position to the landing pad.

ing outside of) the landing pad. An additional reward of +100 or −100 is ob-
tained if the agent lands safely or crashes, respectively. Fuel is in�nite but the
agent receives a negative reward of −0.3 for every frame in which the main en-
gine (upwards force) is used.

▸ Experimental setup. I represented the value functionusing a fully-connected
feed-forward neural network with one hidden layer consisting of 64 neurons.
�e input of that network was the 8-dimensional state representation and the
output layer consisted of 4 neurons, one for each of the four actions. �e net-
work parameters were trained using the DQN algorithm21 for 600, 000 steps, 21Mnih et al. (2015)

using double Q-learning22 and learning parameters as described in Table 6.1. 22 Van Hasselt et al. (2016)

Description Parameter Value

Learning rate α 0.001
Exploration (linearly decreasing) εinit → εfinal 1.00→ 0.05

Discount factor γ 0.99
Batch size - 32

Replay bu�er size - 100, 000

Table 6.1: Learning parameters for the DQN
algorithm.

�e so-trained approximated value function is denoted by q̂DQN(s, a). I evalu-
ated three satis�cing policies with respect to q̂DQN(s, a).�e satis�cing policies
di�ered only in the way aspiration levels are set. I used the aspiration adap-
tion rules aspiration tracking, value tracking, and valved value tracking. �e
baseline policy was the greedy policy with respect to the approximated value
function q̂DQN(s, a).

▸ Results. Figure 6.14 shows episode return as a function of episode e�ort av-
eraged across 100 episodes. On average, satis�cing with valved value tracking

satisficing policies in markov decision processes 119

0

100

200

500 1000 1500
Episode e�ort

Ep
iso
de
re
tu
rn Policy

Aspiration tracking
Greedy
Value tracking
Valved value tracking

Figure 6.14: Results for the Lunar Lander do-
main. E�ort-quality trade-o�s for the greedy
policy and the ξ-satis�cing policy with vary-
ing aspiration adaption rules. �e error bars
show standard error of the mean.

showed approximately the same return23 as the greedy policy while requiring 23 �e average return of valved value track-
ing (186.8) was slightly higher than the aver-
age return of the greedy policy (183.4). How-
ever, the standard error bands overlap so that
no conclusion is drawn from this small di�er-
ence.

around 79.1% of the greedy policy’s e�ort.
�e pure value tracking update rule required even less e�ort (53.2% of the

greedy policy’s e�ort) but also yielded slightly lower quality than the valved
value tracking policy. Both e�ects are consistent with the intuition that led to
the development of valved value tracking in the �rst place. Value tracking some-
times sets the aspiration level too low, which leads to smaller expected e�ort
but can also deteriorate quality. Valved value tracking on the other hand tends
to over-estimate the maximum q-value in the current state and thus sometimes
leads to value-maximizing behavior, which leads to higher quality but alsomore
e�ort.
Aspiration tracking failed to produce a useful policy and achieved an aver-

age return of around −57.2 (that is, the space ship was crashingmore o�en than
not). One possible explanation for the bad performance of aspiration tracking
could be that the initial aspiration level, which was given by the approximated
value of the starting state, was generally too low. In aspiration tracking all as-
piration levels directly depend on the initial aspiration. If the initial aspiration
level is too low, the aspiration levels in all further states are likely to under-
estimate the respective highest q-values too, resulting in what is essentially ran-
dom behavior and a likely crash.24 24 See also the toy example given in Section

6.7, where an initial aspiration level that is too
low can lead to random behavior across the
entire episode.6.9 related literature

▸ Existing models of satisficing behavior. Most closely related to this
chapter’s work is an article by Russo and Van Roy (2018), which discusses a sat-
is�cing strategy in multi-armed non-contextual bandit problems25 with many 25 A non-contextual bandit can be thought of

as an MDP with only one state and every ac-
tion available in that state leading back to the
same state.

arms (actions), including the in�nite-armedbandit.�ey establish information-
theoretic regret bounds26 for the satis�cing policy.�eir satis�cing strategy set-

26 �e regret of a policy π in bandit problems
is the performance gap between the optimal
policy and the policy π.

tles for the �rst action that is “within ε of the optimum”, that is, ε is similar to the

120

aspiration level ξ used here. One main di�erence to our work is that they study
satis�cing for a given ε whereas our main focus is on determining a suitable
aspiration level in each time step.
Ortega et al. (2015) derive a rejection sampling algorithm can be seen as a

stochastic alternative to the satis�cing algorithm studied here. �e algorithm
emerges as a solution to the information-theoretic bounded rationality prob-
lem (also discussed in Section 2.4) of maximizing the free energy potential of a
policy π in a single-shot decision-making problem, de�ned as

FE(π) ∶=∑
a

π(a)U(a) − 1
α∑a π(a) log π(a)

Q(a) , (6.9)

where U is a utility function, Q is a prior policy, and α ∈ R is the inverse tem-
perature which regulates the trade-o� between utility and information cost.
�e regularization term can be interpreted as the cost of information needed
to search for a policy that is di�erent from the prior policy Q.

�e rejection-sampling algorithm samples choice possibilities in randomor-
der and selects the �rst action that is not rejected, where the rejection proba-
bility is a function of the action’s value relative to the maximum value attain-
able (see Algorithm 1 in Ortega et al., 2015). �e rejection probability (which
loosely corresponds to the aspiration level in our work) is thus calculated from
the maximum value attainable, which has to be provided to the algorithm as
an input. Our work, on the other hand, focuses on coming up with a suitable
aspiration level in the �rst place, when the maximum value in the current state
is not available.
Simon’s satis�cing strategy has also been formalized in various settingswithin

economics and game theory.27 Yet most of these settings consider either one- 27Winter (1971), Radner (1975), Selten (1998),
Bendor et al. (2009), and Caplin et al. (2011)shot choice decisions, simple two-player zero-sumgames such as the “Prisoner’s

dilemma”, or two-armed bandits.28 Furthermore, some of this work is descrip- 28 Bendor et al. (2009)

tive in that it aims to describe human choice behavior as closely as possible.
�is is useful for marketing science, where satis�cing has been found to explain
consumer choice behavior.29 29 Stüttgen et al. (2012)

▸ Dealing with large discrete action spaces in reinforcement learn-
ing. Large discrete action spaces have been identi�ed previously as a prob-
lem for deep reinforcement learning problems.30 Existing approaches to tackle 30 Dulac-Arnold et al. (2015)

this problem include to learn action representations that can generalize across
actions.31 Dulac-Arnold et al. (2015) learn a proposal network that proposes 31 Chandak et al. (2019) and Tennenholtz and

Mannor (2019)a hypothetical target action in a continuous action embedding, which is then
mapped to a real action from A(s) that is close or closest to the hypothetical
target action. �ese approaches are somewhat orthogonal to—and could be
combined with—the ξ-satis�cing policy described here.

6.10 discussion

In this chapterwe developed and studied strategies to dynamically set aspiration
levels in Markov decision processes. An initial analysis of satis�cing in a single
decision of the Markov decision process led us to the following guiding princi-
ple: try to set the aspiration level to the maximum q-value in the current state
because the satis�cing policy then yields a Pareto improvement on the greedy
policy.�emaximumq-value in a decision stage is generally not known before-
hand. We therefore developed simple aspiration adaption rules that estimate the
maximum q-value in the current state based on information available from the
previous decision stage. We found that satis�cing agents equipped with these
aspiration adaption rules can follow optimal or near-optimal policies while re-
quiring considerably less e�ort than agents that use a greedy policy.
Klein et al. (1995) provide experimental support that chess players generate

(end evaluate) only relatively few actions (chess moves) before making a deci-
sion. Furthermore, they found that the action-generation process is unlikely
to be uniformly random. Instead chess players use their experience and intu-
ition to guide the action-generating process so that, on average, good or opti-
mal moves are likely to be considered earlier than badmoves. In this chapter we
made the simplifying assumption that the satis�cing policy’s action-generating
process followed a uniformly random distribution. If, instead, the agent had
access to an action proposal distribution that was likely to propose high-value
actions earlier than low-value actions, the expected e�ort required by the satis-
�cing policy could possibly be reduced even further.

Part IV

D I SCUS S ION & APPENDIX

7
DI SCUS S ION OF CONTR IBUT IONS

In this dissertation I explored two approaches of how models of bounded ra-
tionality can inform reinforcement learning algorithms to be more resource-
e�cient.

▸ Part II: Boundedly rational function approximation. �e goal in
this partwas to reduce the amount of training data required to learn a useful pol-
icy. In Chapter 5 I presented a novel reinforcement learning algorithm, called
iterative policy space expansion (or IPSE), which adapts its policy approximation
architecture to the amount and quality of data available. �e high-level idea of
this algorithm is as follows. At the beginning of the learning process, when re-
sources are most limited, the algorithm learns in a strongly constrained policy
space and relies on a model of bounded rationality to quickly learn an initial
policy. �is initial policy may not be optimal but it is good enough to allow
the agent to e�ciently explore its environment and to collect more and better
data. With increasing learning progress, the algorithm then gradually expands
the policy space and thus allows the agent to learn a more re�ned, data-driven
policy.

�e IPSE algorithm incorporates the general idea that learning in a sequence
of progressively more di�cult learning tasks allows the learner to gradually
build more complex concepts and thus to accelerate the learning process. Con-
trary to existing algorithms that exploit this idea, the IPSE algorithm does not
require the algorithm designer to explicitly construct a series of progressively
more di�cult tasks. Instead, the task di�culty is regulated intrinsically by a
policy space that initially is strongly constrained and expands over time. �is
propertymakes the IPSE algorithm applicable to domains where creating a cur-
riculum of increasingly di�cult tasks is di�cult or costly.
I studied a speci�c version of the IPSE algorithm that is centered around the

equal-weighting heuristic. I evaluated this algorithm in the challenging domain
of learning how to playTetris.�e IPSE algorithm showed a substantially higher
learning rate than competing algorithms that did not use a boundedly rational
model as building block for learning, including the state-of-the-art algorithm
CBMPI.
Future work can build on the ideas presented in this chapter in a number of

ways.

126

Onedirection is to extend these ideas frompolicy-based reinforcement learn-
ing to value-based reinforcement learning. Put di�erently, the same or simi-
lar regularization techniques can be used to constrain (and expand) the value-
function space.
Another possible direction is to use a di�erent model of bounded rational-

ity as central building block. For instance, instead of �rst learning an equal-
weighting model, the algorithm could �rst learn a non-compensatory1 decision 1 See Section 2.2.2.

rule or a lexicographic-tallying model2 before expanding the policy space. 2 Şimşek and Buckmann (2017)

A third direction is to extend these ideas to non-linear function approxima-
tion architectures. In its current form, the IPSE algorithm relies on the avail-
ability of powerful features that can be meaningfully combined using a linear
function. In domains in which such features are not available, deep reinforce-
ment learning algorithms can be used to discover features during the learning
process. A boundedly rational non-linear function approximator could lead to
faster feature discovery in reinforcement learning algorithms.

�e IPSE algorithm was directly inspired by the results obtained in the �rst two
chapters of this part, which were concerned withmodels of bounded rationality
in supervised learning.3 In addition, these �rst two chapters provided insights 3 Previous work (Şimşek et al., 2016; Şimşek,

2020a) has exploited and transferred insights
from the study of bounded rationality in su-
pervised learning to reinforcement learning.

into how existingmodels of bounded rationality can be useful inmachine learn-
ing algorithms and applications more generally, beyond their application in re-
inforcement learning.
In Chapter 3 I presented the most comprehensive empirical study about the

predictive performance of simple regression models to date. Simple regression
models routinely outperformed state-of-the-art regressionmodels on small train-
ing sets. Averaged across all data sets, simple models showed lower predictive
accuracy than their more complex counterparts on large training sets. How-
ever, even for larger training set sizes, there was almost always at least one sim-
ple model that rivaled the best-performing model. Put di�erently, an agent
equipped with a collection of simple models can make excellent inferences if
the agent is capable to select the right model for the present decision environ-
ment.4 4 Similar results were also obtained in Buck-

mann and Şimşek (2017) for the paired com-
parison task. �ese �ndings are also sym-
pathetic to the idea of the mind as an adap-
tive toolbox (Gigerenzer and Selten, 2002;
Rieskamp and Otto, 2006; Brighton, 2006).

In Chapter 4 I presented a regularization term, called shrinkage toward equal
weights (or STEW), which has two useful properties in addition to its variance-
reduction capabilities similar to other regularization techniques. First, it allows
the user to interpolate between a simple, boundedly rational equal-weighting
solution and a fully data-driven solution such as the least-squares estimator.
Second, a STEW-regularizedmodel can incorporate prior knowledge about fea-
ture directions in ways that other regularized linear models cannot. When
knowledge about feature directions was available, linear regression with STEW
regularization outperformed competing regularized linear models across vari-
ous real-world data sets.

discussion of contributions 127

▸ Part III: Boundedly rational action selection. �e goal in this part
was to reduce the computational resources required by the agent by means of
reducing the number of actions that have to be considered and evaluated before
a decision is made. I presented an approach based on Herbert Simon’s satis�c-
ing strategy for decision making. �e satis�cing policy is to consider actions
sequentially and to select the �rst action whose estimated long-term value is
above some pre-de�ned aspiration level. By selecting a possibly sub-optimal ac-
tion before all actions are considered and evaluated, the satis�cing policy trades
o� action quality against computational e�ort.

�e present work departs from existing literature by studying the satis�c-
ing strategy in the context of Markov decision processes, which is one of the
most widely studied mathematical frameworks for sequential decision-making
problems. �e main challenge for a satis�cing agent in this context is to deter-
mine a suitable aspiration level at every decision stage. I de�ned three simple
rules to set aspiration levels dynamically and studied how a satis�cing agent
using these aspiration adaption rules trades o� e�ort and quality across the en-
tire sequential decision-making process. Under the strong conditions that the
Markov decision process is deterministic and that the agent has access to an
optimal value function, the satis�cing policy provably yields optimal expected
quality but requires provably less expected e�ort than the value-maximizing
policy. �e empirical results I presented indicate that the satis�cing policy can
bemore resource-e�cient than the greedy policy even if the optimal value func-
tion is only approximated.

�is work is limited in that it studied the properties of the satis�cing pol-
icy only a�er the actual learning process, that is, when an optimal value func-
tion (or an approximation thereof) is already available. However, the presented
work laid the groundwork for exploring the satis�cing strategy in the learning
process itself. For instance, an agent can use the ξ-satis�cing policy in combina-
tion with any of the proposed aspiration adaption rules as exploration policy in
a temporal-di�erence learning algorithm. I believe that this could yield a useful
approach to perform directed exploration.5 Directed exploration methods use 5 �run and Möller (1991). Directed explo-

ration is also sometimes called structured ex-
ploration (Gupta et al., 2018).

some form of exploration-speci�c knowledge to guide the exploration process,
with the goal to explore promising actions more o�en than actions that are un-
likely to have a positive impact. Provided a suitably chosen aspiration level, the
satis�cing policy is a directed exploration method in the sense that it explores
among satisfying (and thus promising) actions only.

In the two main parts just presented, I used di�erent types of boundedly ra-
tional models from the literature to address di�erent resource limitations. One
interesting direction for future work is to combine the di�erent approaches pre-
sented in this dissertation. For example, an agent could use satis�cing in com-
bination with a boundedly rational value function approximation architecture
to address both data and computational limitations.

A
APPENDIX A . CODE & IMPLEMENTAT ION DETA I L S

▸ Open-sourced code.�eGitHub repository https://github.com/janmaltel/
stew-tetris contains a Python implementation of STEW-regularized multi-
nomial logistic regression, as used in Chapter 5. �e repository also contains a
Tetris implementation and example scripts to run Tetris experiments.

▸ Implementation details for regression models in Chapter 3.

Ordinary least squares (OLS). We used the R1 builtin function lm() for esti- 1 R Core Team (2015)

mating OLS. Whenever there were more predictors than observations (that
is, p > n), we used only the n− 1 predictors that are most correlated with the
response to avoid numerical instabilities.

Elastic-net regression.2 �e elastic net has two main parameters. Parameter 2 Zou and Hastie (2005)

λ ≥ 0 controls the overall strength of regularization. �e elastic net reduces
to OLS for λ = 0. Parameter 0 ≤ α ≤ 1 controls the amount of ridge versus
Lasso characteristics.�e elastic net generalizes two other regularized linear
models, ridge regression3 when α = 0 and the Lasso4 when α = 1. We used 3 Hoerl and Kennard (1970)

4 Tibshirani (1996)the R package glmnet5 in order to estimate the elastic net. �e parameters
5 Friedman et al. (2015)α and λ were jointly optimized using 10-fold cross-validation using a two-

dimensional grid search with α ∈ {0, 0.25, 0.5, 0.75, 1} and λ on the built-in
search path of glmnet, which used a log-spaced grid with a maximum of 100
candidate values.

Random forest regression6 is a non-parametric andnon-linear regressionmodel. 6 Breiman (2001)

Random forests are ensembles of regression trees.7 We used the R package 7 Breiman et al. (2017)

randomForest8 and use ntree = 500 trees per forest. 8 Liaw and Wiener (2002)

▸ Implementation details for regression models in Chapter 4.

Shrinkage toward equal weights (STEW). We used STEW with q = 2 for the
experiments. Solutions were computed using the closed-form solution given
in Equation 4.5. �e regularization strength λ was optimized on the train-
ing set using k-fold cross validation on a log-spaced grid withmaximum 100
candidate values (the search stops early when the norm of the di�erence be-

https://github.com/janmaltel/stew-tetris
https://github.com/janmaltel/stew-tetris

130

tween actual and previously estimated weights is smaller than some small
ε > 0).

Non-negative lasso (NNLasso). We used the R package nnlasso (Mandal and
Ma, 2016) to estimate non-negative least squareswith lasso penalty (NNLasso).
�e regularization strength λ was optimized using k-fold cross-validation
and using the built-in search path of the nnlasso package.

Elastic-net regression. See in implementation details for regression models in
the previous chapter described further above in this appendix.

▸ The STEW penalty in the IPSE algorithm.
In Chapter 4, the STEW penalty is de�ned as

PSTEW(β) =∑
i< j

(β i − β j)2 .

In Chapter 5, the penalty term used to regularize multinomial regression is

Pd(β) = ∥β − d∥22 = p∑
i=1(β i − d i)2 ,

where d = (d1 , . . . , dp) ∈ {−1, 1}p are feature direction estimates. Here we show
that PSTEW can be used to implement Pd in the policy learning context described
in Section 5.4.
We start by showing that the STEW penalty is equivalent (up to a constant

factor) to the squared Euclidean distance between the weight vector and the
average weight vector, that is, PSTEW(β) = p∥β − β̄∥22 = p (∑p

i=1(β i − β̄)2).

appendix a. code & implementation details 131

PSTEW(β) =∑
i< j

(β i − β j)2
=∑

i< j
(β2i − 2β i β j + β2j)

= (p − 1) p∑
i=1 β2i − 2∑

i< j
β i β j

= (p − 1) p∑
i=1 β2i − 2∑

i< j
β i β j + p∑

i=1 β2i − p∑
i=1 β2i Adding a “constructive zero”:

∑
p
i=1 β2i −∑

p
i=1 β2i = 0.

= p
p∑

i=1 β2i − 2∑
i< j

β i β j − p∑
i=1 β2i

= p
p∑

i=1 β2i − (p∑
i=1 β i)2 Via expression for the square of a �nite sum:

(∑
n
i=1 a i)

2 = ∑n
i=1 a2i + 2∑

n
i=1∑

i−1
j=1 a i a j

= p
p∑

i=1 β2i − p2 β̄2

= p(p∑
i=1 β2i − pβ̄2)

= p(p∑
i=1 β2i − 2pβ̄2 + pβ̄2)

= p
⎛⎝

p∑
i=1 β2i − 2β̄ p∑

j=1 β j + pβ̄2
⎞⎠

= p(p∑
i=1(β2i − β j β̄ + β̄2))

= p(p∑
i=1(β i − β̄)2)

= p∥β − β̄∥22

Equivalence between this term and Pd(β) then follows from the following
considerations and pre-processing steps:

1. �e factor p can be absorbed into the regularization strength λ.

2. Knowledge of the feature direction vector d allows us to direct all features.9 9 See also Section 2.2.1.

A�er all features are directed, the vector of feature directions is given by d =(1, . . . , 1).
3. In the context of the discrete choice linear model considered in Section 5.4,
the policy in invariant to scale. �at is, the policy remains unchanged if all
weights are multiplied by the same positive constant. It follows that shrink-
ing weights to a constant produces the same behavior, irrespective of the
value of that constant.

132

�erefore, in the given context the STEW penalty can be used to implement
Pd . Note that this is not true in a regression context because the corresponding
linear model is not invariant to scale.

▸ Classification-based modified policy iteration,10 (or CBMPI) is a 10 Gabillon et al. (2013) and Scherrer et al.
(2015)benchmark algorithmused in the experiments inChapter 5. CBMPI is a rollout-

based reinforcement learning algorithmwith the following particularities, com-
pared to classical classi�cation-based reinforcement learning.11 11 Lagoudakis and Parr (2003). Classi�cation-

based reinforcement learning is discussed in
detail in Section 2.3.2.1. Value-function approximation. �e CBMPI algorithm uses rollouts not only

to approximate a policy function but also to approximate a state-value func-
tion, which is a regression task. �e approximated action-values are boot-
strapped in the rollout procedure itself and for cost-sensitive policy approx-
imation, as explained below.

2. Bootstrapped rollouts. �e CBMPI algorithm bootstraps the approximate
state-value function to estimate action-values. Speci�cally, the approximated
value of the last state of a rollout is added to the cumulative reward obtained
during the rollout to obtain the following action-values estimate:

Q̂(s, a) = T∑
t=1 rt + v̂(sT),

where v̂(sT) is the approximated value of the last state of the rollout, sT .

3. Cost-sensitive classi�cation. For their Tetris experiments, Scherrer et al. (2015)
used const-sensitive classi�cation to approximate a new policy. In the con-
text of policy approximation, cost-sensitive classi�cation minimizes the loss
function

L(π) = ∑
s∈R [max

a∈A(s) Q̂(s, a) − Q̂(s, π(s))] , (A.1)

where Q̂(s, a) is the rollout value for action a, and R is the set of rollout
starting states. In their Tetris experiments, Scherrer et al. used a linear pol-
icy π(s) = argmax

a∈A(s) ϕ(s, a)⊺β and optimized the feature weights β using an

evolutionary algorithm called covariance matrix adaptation evolution strat-
egy (CMA-ES).12 12 Hansen and Ostermeier (2001)

4. Rollout set. Similar to Lagoudakis andParr (2003), CBMPIuses a pre-computed
data set of rollout states. �e initial rollout states are sampled from a large,
pre-computed rollout data set that is generated by an expert policy.13 13 Scherrer et al. (2015) used games played

by the DU controller (�iery and Scherrer,
2009b) to generate the rollout data set. We
used the exact same rollout data set as Scher-
rer et al. (2015) in our experiments.

appendix a. code & implementation details 133

Algorithm 9 Classi�cation-Based Modi�ed Policy Iteration (CBMPI, Scherrer
et al., 2015).
Output:
π(s) ∶ S → A // policy that returns an action a ∈ A for given state s ∈ S
Input:
Π // policy spaceD // set of rollout starting states

π ← uniform random policy
v ← arbitrary state value function
for k = 0, 1, 2, . . . do
for all s ∈ D do

ṽ(s)← BootstrappedRollout(s, π(s), π, v) // see Algorithm 10
for all a ∈ A(s) do

Q̃(s, a)← BootstrappedRollout(s, a, π, v)
end for

end for
// Regression to learn new value function
v ← argmin

v
∑s∈D (v(s) − ṽ(s))2

// Cost-sensitive classi�cation to learn new policy

π ← argmin
π∈Π ∑s∈D [max

a∈A(s) Q̃(s, a) − Q̃(s, π(s))]
end for

134

Algorithm 10 BootstrappedRollout(s, a, πr , v): Rollout procedure for
estimating the value of an action a in state s using rollout policy πr and value
function v.
Output:
Q̂ ∈ R, estimated value of taking action a in s
Input:
s ∈ S // rollout starting state
a ∈ A(s) // action to be evaluated
πr(s) ∶ S → A // rollout policy
M ∈ N // number of rollouts
T ∈ N // rollout length
γ ∈ [0, 1] // discount factorG(s, a) ∶ S ×A(s)→ S ×R // generative model
v(s) ∶ S → R // state-value function

for all j = 1, . . . ,M do(s′ , r)← G(s, a)
Q̂ j ← r
s ← s′
for all t = 1, . . . , T − 1 do(s′ , r)← G(s, πr(s))

Q̂ j ← Q̂ j + γ tr
s ← s′

end for
Q̂ j ← Q̂ j + γTv(s) // bootstrap value of the last rollout state

end for
return Q̂ ← 1

M ∑M
j=1 Q̂ j

B
APPENDIX B . ADDIT IONAL F IGURES

Learning curves on individual real-world data sets. �e following �gures
show learning curves on the individual data sets that were used to compute
average learning curves shown in the main part of the dissertation.

• Chapter 3. Additional �gures B.1 to B.3 correspond to Figure 3.2.

• Chapter 4. Figures B.6 and B.7 correspond to panels c and f of Figure 4.5,
respectively.

Comparison of regularization paths. Figure B.4 shows regularization paths
(weight estimates as a function of the regularization strength λ) for the STEW
with l1 and l2 penalties, and the total variation (TV) regularization period with
various orders of the predictors. �e di�erences in regularization behavior are
discussed in Section 4.3.
STEW in an environment with high variance of weights. Figure B.5 shows
learning curves for STEW in an environment in which the true weights are
highly non-equal. We used the experimental setup of Section 4.5.1 with prior
weight distribution β ∼ U(0, 50).

136

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●
●

●
● ●

●

●

●

●

●
●

●

●
● ● ● ● ● ● ●● ● ●

●

●

●

●

●

●
● ● ● ● ● ●

abalone afl air airfoil

algae athlete basketball birthweight

bodyfat bone car cigaretteConsumption

concrete contraception cpu crime

diamond dropout excavator

0.8

0.9

1.0

1.1

1.2

1.3

0.9

1.0

1.1

1.2

0.6

0.7

0.8

0.9

1.0

1.1

0.7

0.8

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

1.2

1.3

0.6

0.8

1.0

1.2

0.8

0.9

1.0

1.1

0.9

1.0

1.1

1.2

0.6

0.7

0.8

0.9

1.0

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.8

0.9

1.0

1.1

0.6

0.8

1.0

1.2

0.6

0.7

0.8

0.9

1.0

1.1

0.4

0.5

0.6

0.7

0.8

0.7

0.8

0.9

1.0

1.1

0.2

0.4

0.6

0.8

1.0

0.8

0.9

1.0

1.1

1.2

0.4

0.6

0.8

4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4 6 8 10 15 20 30 4 6 8 10 15 20 30 4050 100

4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 40 50 4 6 8 10 15 20 30 4050 100

4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4 6 8 10 15 20 30 40 50 4 6 8 10 15 20 30 4050 100

4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 40

4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 40 50 4 6 8 10 15 20 30
Training set size (log scale)

M
ea

n
R

M
SE

● OLS

Elastic
Net

Random
Forest

Equal
Weights

Single
Cue

Correlation
Weights

Correlation
Ranks

Figure B.1: Learning curves for simple regres-
sion models. Data sets 1 to 18.

appendix b. additional figures 137

●

●

●

●
● ●

● ● ● ●● ● ●

●

●

●

●

●

● ● ● ●

●

●

●

● ●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ●

●

●

●
●

●

●
● ● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

fish fuel gambling highway

hitter home homeless infant

laborsupply lake land lung

mammal medexp men mileage

mine monet mortality

0.4

0.6

0.8

0.7

0.8

0.9

1.0

1.1

1.2

0.6

0.8

1.0

1.2

0.6

0.7

0.8

0.9

0.6

0.8

1.0

1.0

1.1

1.2

0.8

0.9

1.0

1.1

0.8

0.9

1.0

1.0

1.1

1.2

0.6

0.8

1.0

1.2

0.4

0.6

0.8

0.5

0.6

0.7

0.8

0.9

0.7

0.8

0.9

1.0

1.1

0.9

1.0

1.1

1.2

1.3

0.7

0.8

0.9

1.0

1.1

0.4

0.6

0.8

0.7

0.8

0.9

1.0

1.1

0.9

1.0

1.1

1.2

0.7

0.8

0.9

1.0

1.1

1.2

4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 40 4 6 8 10 15 20 30 40 4 6 8 10 15 20 30

4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 40 4 6 8 10 15 20 30 40 50

4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 40 50 4 6 8 10 15 20 30 40 50 4 6 8 10 15 20 30 4050 100

4 6 8 10 15 20 30 40 50 4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4 6 8 10 15 20 30 4050 100

4 6 8 10 15 20 30 40 4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 40 50
Training set size (log scale)

M
ea

n
R

M
SE

● OLS

Elastic
Net

Random
Forest

Equal
Weights

Single
Cue

Correlation
Weights

Correlation
Ranks

Figure B.2: Learning curves for simple regres-
sion models. Data sets 19 to 37.

138

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●
● ●

●
●

●

●

●

● ●
● ● ● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

movie mussel news obesity

occupation pinot pitcher plasma

prefecture reactor rebellion recycle

rent salary schooling tip

vote wage whitewine

0.7

0.8

0.9

1.0

1.1

0.7

0.8

0.9

1.0

1.1

1.2

1.0

1.1

1.2

0.6

0.7

0.8

0.9

1.0

1.1

0.4

0.6

0.8

1.0

1.2

0.5

0.6

0.7

0.8

0.9

0.6

0.8

1.0

1.2

1.0

1.1

1.2

0.6

0.7

0.8

0.9

1.0

1.1

0.6

0.8

1.0

1.2

0.8

0.9

1.0

1.1

1.2

0.4

0.6

0.8

1.0

0.9

1.0

1.1

1.2

0.5

0.6

0.7

0.8

0.9

0.9

1.0

1.1

1.2

0.9

1.0

1.1

0.9

1.0

1.1

1.2

0.9

1.0

1.1

1.2

0.9

1.0

1.1

1.2

4 6 8 10 15 20 30 40 50 4 6 8 10 15 20 30 40 4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4050 100

4 6 8 10 15 20 30 4 6 8 10 15 20 30 4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4050 100

4 6 8 10 15 20 30 40 4 6 8 10 15 20 4 6 8 10 15 20 4 6 8 10 15 20

4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 40 4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4050 100

4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4050 100 4 6 8 10 15 20 30 4050 100
Training set size (log scale)

M
ea

n
R

M
SE

● OLS

Elastic
Net

Random
Forest

Equal
Weights

Single
Cue

Correlation
Weights

Correlation
Ranks

Figure B.3: Learning curves for simple regres-
sion models. Data sets 38 to 57.

appendix b. additional figures 139

0.0

0.1

0.2

0.3

10−4 10−2 100 102 104

λ (log scale)

W
ei

gh
t e

st
im

at
es

STEW (q = 2)

0.0

0.1

0.2

0.3

10−1 10−0.5 100

λ (log scale)
W

ei
gh

t e
st

im
at

es
STEW (q = 1)

0.0

0.1

0.2

0.3

10−1 10−0.5 100 100.5 10

λ (log scale)

W
ei

gh
t e

st
im

at
es

β1

β2

β3

β4

β5

β6

β7

TV with OLS order: 6 7 3 2 1 4 5

0.0

0.1

0.2

0.3

10−1 10−0.5 100 100.5 101

λ (log scale)

W
ei

gh
t e

st
im

at
es

TV with order: 3 4 6 7 5 2 1

0.0

0.1

0.2

0.3

10−1 10−0.5 100 100.5 101

λ (log scale)

W
ei

gh
t e

st
im

at
es

TV with order: 2 7 3 1 5 6 4

0.0

0.1

0.2

0.3

10−1 10−0.5 100 100.5 101

λ (log scale)

W
ei

gh
t e

st
im

at
es

TV with order: 1 6 3 2 5 7 4

Figure B.4: Weight estimates on the Rent data
set as a function of regularization strength λ
for STEW with l1 and l2 penalties, and total
variation (TV) with various orders of the pre-
dictors.

●

●

●

●

●

●

● ●

0.0

0.2

0 50
β

0

5000

10000

15000

20000

25000

15 20 30 50 100 200
Training set size (log scale)

M
S

E

β ~Uniform(0, 50)

●

EW

Ridge

Lasso

NNLasso

STEW

Figure B.5: Mean squared error (MSE) across
400 repetitions for equal weights (EW),
ridge regression, the Lasso, the non-negative
Lasso (NNLasso) and shrinkage toward equal
weights (STEW) as a function of training set
size in an environment where the true weights
are sampled from β ∼ U(0, 50).

140

0.7

0.8

0.9

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Abalone

0.7

0.8

0.9

1.0

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Airfoil

0.85

0.90

0.95

1.00

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Algae

0.80

0.85

0.90

0.95

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Cigarette

0.7

0.8

0.9

1.0

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Concrete

0.4

0.5

0.6

0.7

0.8

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Fish

0.5

0.6

0.7

0.8

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Lung

0.4

0.5

0.6

0.7

0.8

0.9

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Mileage

0.85

0.90

0.95

1.00

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Schooling

0.87

0.90

0.93

0.96

0.99

1.02

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Wage

0.90

0.95

1.00

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

White wine

Figure B.6: Median root mean squared error
(RMSE) across 200 repetitions on individual
data sets. Predictors were directed based on a
Lasso estimate on the entire data set.

appendix b. additional figures 141

0.70

0.75

0.80

0.85

0.90

0.95

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Abalone

0.7

0.8

0.9

1.0

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Airfoil

0.85

0.90

0.95

1.00

1.05

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Algae

0.80

0.85

0.90

0.95

1.00

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Cigarette

0.7

0.8

0.9

1.0

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Concrete

0.4

0.5

0.6

0.7

0.8

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Fish

0.5

0.6

0.7

0.8

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Lung

0.5

0.6

0.7

0.8

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Mileage

0.85

0.90

0.95

1.00

1.05

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Schooling

0.90

0.95

1.00

1.05

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

Wage

0.90

0.95

1.00

1.05

4 6 10 20 50 100 300
Training−set size (log scale)

M
ed

ia
n

R
M

S
E

EW

Elastic
net

NNLasso

STEW

White wine

Figure B.7: Median root mean squared error
(RMSE) across 200 repetitions on individual
data sets. Predictors were directed based on
the training set using Pearson correlation co-
e�cients between features and response.

C
APPENDIX C . DATA SET S

�is appendix describes each data set from Table 3.2 in more detail. It shows
the number of objects (or observations), the criterion (response) variable, the
attributes (predictors), and the source of the data set.

Abalone Objects: 4177 abalones (sea snails). Criterion: age (measured in
visible rings). Attributes: sex, length, diameter, height, wholeweight, shucked
weight, viscera weight, shell weight. Source: �is data set comes from a study
by Nash et al. (1994). It is available from the UCI Machine Learning Reposi-
tory (Bache and Lichman, 2013).

AFL Objects: 41 Australian Football League (AFL) games at the Melbourne
Cricket Ground in 1993 and 1994. Criterion: attendance. Attributes: fore-
casted maximum temperature on the day of the game, total attendance at other
AFL games in Melbourne and Geelong on the day of the game, total member-
ship in the two clubs whose teams were playing, number of players in the top
50 who participated in the game, number of days since the earliest game of the
season. Source: �is data set was assembled by Rowan Todd and Mark Mc-
Naughton for a class project at theUniversity ofQueensland in a statistics course
taught by Margaret Mackisack. �e data sources were�e Football Bible ’94 by
Rex Hunt, �e Weekend Australian, Inside Football, and Football Record. �e
data set is available from OzDASL data library (Smyth, 2011), where it is listed
with the name AFL Crowd Attendance at the MCG.

Air Objects: 41 cities in theUnited States. Criterion: annualmean concen-
tration of sulfur dioxide. Attributes: average annual temperature, number of
manufacturing enterprises employing 20 or more workers, population, average
annual wind speed, average annual rainfall, average number of days with rain-
fall per year. Source: �e data were gathered by Sokal and Rohlf (1981) from
several publications of the United States government.�e data set is reported in
a book by Hand et al. (1994) with identifying number 26 and label air pollution
in US cities.

Airfoil Objects: 1503 airfoils at various wind tunnel speeds and angles of
attack. Criterion: scaled sound pressure level, in decibels. Attributes: fre-

144

quency, angle of attack, chord length, free-streamvelocity, suction side displace-
ment thickness. Source: �is data set comes from a study by Brooks et al.
(1989). It is available from the UCI Machine Learning Repository (Bache and
Lichman, 2013).

Algae Objects: 340 samples from European rivers taken over a period of
approximately one year. Criterion: density of algae type a. Attributes: con-
centrations of eight chemicals, season (fall, winter, spring, summer), river size
(small, medium, large), �uid velocity (low, medium, high). Source: �e data
set is from the 1999 Computational Intelligence and Learning (COIL) compe-
tition. It is available from the UCI data repository (Bache and Lichman, 2013),
where it is labeled COIL 1999 competition data.

Athlete Objects: 202 nationally-ranked athletes in Australia. Criterion:
blood hemoglobin concentration. Attributes: body mass index, sum of skin
folds, percent body fat, lean bodymass, height, weight, sex, the sport the athlete
competes in (basketball, �eld, gymnastics, netball, rowing, track 400m, swim-
ming, sprint, tennis, water polo). Source: �e data were collected by Telford
and Cunningham (1991) at the Australian Institute of Sport. �e data set is
reported by Maindonald and Braun (2010) and is available from associated R
package DAAG (Maindonald and Braun, 2013) with label ais.

Basketball Objects: 96 basketball players. Criterion: points scored per
minute. Attributes: assists per minute, height, time played, age. Source:�e
data set is reported by Simono� (2003) and is available from a website main-
tained by the author (Simono�, 2015), where it is labeled baskball.dat.

Birthweight Objects: 189 newborns. Criterion: birth weight. Attributes:
age of mother, weight of mother at last menstrual period, race (white, black,
other), number of previous premature labors, number of physician visits during
the �rst trimester, presence of uterine irritability, whether the mother smoked
during pregnancy, whether the mother has a history of hypertension. Source:
�e datawere collected at BaystateMedical Center in Spring�eld,Massachusetts
in 1986 (Hosmer and Lemeshow, 2000). �e data set is electronically available
from R packageMASS (Venables and Ripley, 2002; Ripley et al., 2013), where it
is labeled birthwt.

Bodyfat Objects: 252 males. Criterion: percentage of body fat determined
by underwater weighing. Attributes: age, weight, height, and various body
circumference measurements: neck, chest, abdomen, hip, thigh, knee, ankle,
biceps, forearm, wrist. Source:�e data were collected by Penrose et al. (1985).
�e data set is available from StatLib (Meyer andVlachos, 1989) with label body-
fat.

appendix c. data sets 145

Bone Objects: 42male skeletons buried in co�ns. Criterion: nitrogen con-
tent. Attributes: deposition time, depth of burial, age of the person, whether
quicklime was added to the co�n at burial, whether skeleton was contaminated
with oil, burial site (2 sites 130 km apart in northern England). Source: �e
data were collected by Jarvis (1997).�e data set is available electronically from
a data repository maintained byWinner (2015), where it is listed with the name
nitrogen levels in skeletal bones of various ages and internment lengths.

Car Objects: 93 passenger cars on sale in the United States in 1993. Crite-
rion: sale price of the most basic version of the car. Attributes: city mileage,
highway mileage, cylinders (3, 4, 5, 6, 8, rotary), engine size, maximum horse-
power, engine revolutions per mile in highest gear, fuel tank capacity, passenger
capacity, length, wheelbase, width, weight, rear seat room, luggage capacity, u-
turn space, airbag (none, driver only, both driver and passenger), whether a
manual transmission version is available, whether the manufacturer is from the
United States, type of car (small, sporty, compact, midsize, large, van), drive-
train type (rear, front, four-wheel drive). Source: �e data set was assembled
by Lock (1993) using information from PACE New Car & Truck 1993 Buying
Guide and Consumer Reports April 1993 Annual Auto Issue. It is available from
the R packageMASS (Venables and Ripley, 2002; Ripley et al., 2013) with label
Cars93.

Cigarette Objects: 528 states in the USA (in di�erent years). Criterion:
packs per capita. Attributes: year, consumer price index, state population,
state personal income, average state, federal, and average local excise taxes for
�scal year. Source: �e data set was assembled by Professor Jonhatan Gruber,
MIT. It has been used in an introductory econometrics textbook (Stock and
Watson, 2003). It is available electronically from R package Ecdat (Croissant,
2013).

Concrete Objects: 1030 concrete samples. Criterion: concrete compres-
sive strength. Attributes: cement (kg/m3), blast furnace slag (kg/m3), �y
ash (kg/m3), water (kg/m3), superplasticizer (kg/m3), coarse aggregate (kg/m3),
�ne aggregate (kg/m3), age in days. Source: �is data set comes from a study
by Yeh (1998). It is available from theUCIMachine Learning Repository (Bache
and Lichman, 2013).

Contraception Objects: 210 localities in the world (most are United Nations
members but includes areas like Hong Kong that are not independent coun-
tries). Criterion: percentage of unmarried women using a modern method
of contraception. Attributes: annual population growth rate, per capita 2001
gross domestic product, percentage of females over the age of 15 who are eco-
nomically active, population, expected number of live births per female in 2000,
percentage of population that is urban in 2001. Source:�e data set is reported

146

byWeisberg (2005) who notes that the source of the data is the United Nations.
It is electronically available from R package alr3 (Weisberg, 2011) where it is
labeled UN3.

CPU Objects: 209 central processing units on themarket in 1981–1984. Cri-
terion: published performance on a benchmarkmix relative to an IBM 370/158
Model 3. Attributes: cycle time, minimum main memory, maximum main
memory, cache memory, minimum number of channels, maximum number
of channels. Source: �e data set was assembled by Ein-Dor and Feldmesser
(1987) using information from Computerworld magazine. It is electronically
available from the R package MASS (Venables and Ripley, 2002; Ripley et al.,
2013) with label cpus.

Crime Objects: 47 states of the United States. Criterion: crime rate in
1960. Attributes: percentage of males aged 14–24 in state population, indi-
cator variable for a southern state, mean years of schooling of the population
aged 25 years or older, per capita expenditure on police protection in 1960, per
capita expenditure on police protection in 1959, labor force participation rate of
civilian urban males in the age-group 14–24, number of males per 100 females,
state population in 1960, percentage of nonwhites in the population, unem-
ployment rate of urban males 14–24, unemployment rate of urban males 35–39,
wealth (median value of transferable assets or family income), income inequal-
ity (percentage of families earning below half the median income), probability
of imprisonment (ratio of number of commitments to number of o�enses), av-
erage time served by o�enders in state prisons before their �rst release. Source:
�e data set was assembled by Ehrlich (1973) from various publications of the
United States government, includingUniform Crime Reports of the Federal Bu-
reau of Investigation, United States Census, and National Prison Statistics Bul-
letin. Rounded data, taken fromVandaele (1978), is electronically available from
OzDASL (Smyth, 2011), where it is labeled uscrime.

Diabetes Objects: 442 diabetes patients. Criterion: a quantitative measure
of disease progression one year a�er baseline. Attributes: age, sex, bodymass
index, average blood pressure and six blood serum measurements. Source:
�e data was used in Efron et al. (2004). It is available electronically from the
R package lars (Efron and Hastie, 2013).

Diamond Objects: 308 round diamond stones. Criterion: sale price. At-
tributes: weight in carats, color purity (D, E, F, G,H, I), clarity (internally �aw-
less, very very slight inclusion 1, very very slight inclusion 2, very slight inclusion
1, very slight inclusion 2), certi�cation (Gemmological Institute of America, In-
ternational Gemmological Institute, Hoge Raad Voor Diamant). Source: �e
data set was assembled by Chu (2001) from advertisements in Singapore’s Busi-
ness Times edition of February 18, 2000. It is available electronically from the R

appendix c. data sets 147

package Ecdat (Croissant, 2013).

Dropout Objects: 63 public high schools in Chicago. Criterion: dropout
rate. Attributes: enrollment, attendance rate, parental involvement rate, per-
cent limited-English students, percent low-income students, average class size,
percentWhite students, percent Black students, percent Hispanic students, per-
cent Asian students, percent minority teachers, average composite ACT score,
IGAP scores: reading, math, science, social science, writing. Source:�is pre-
diction problem is from a study by Czerlinski et al. (1999). �eir data sources
are two articles in the February 1995 issue of Chicagomagazine (Morton, 1995;
Rodkin, 1995), where the authors note that their primary data source is Illinois
State Board of Education’s 1994 School Report Card.

Excavator Objects: 33 hydraulic excavators operating in the opencast min-
ing industry in the United Kingdom. Criterion: annual maintenance cost.
Attributes: weight, type of machine (front shovel, backacter), type of indus-
try (opencast coal, opencast slate), company attitude to used oil analysis (regu-
lar use, not). Source: �e data are from a study by Edwards et al. (2000). �e
data set is available electronically from a data repository maintained byWinner
(2015), where it is listed with the name construction plant maintenance costs.

Fish Objects: 413 female Arctic charr. Criterion: number of eggs. At-
tributes: age, weight, mean egg weight. Source: �is prediction problem is
from a study by Czerlinski et al. (1999). �e data were collected by Christian
Gillet from the French National Institute for Agricultural Research. �e data
set used in this study was obtained via personal communication.

Fuel Objects: 51 states and the District of Columbia of the United States.
Criterion: per capita motor fuel consumption in 2001. Attributes: popu-
lation, fuel tax rate, per capita income, miles of federal-aid primary highways,
proportion of the population who are licensed drivers. Source:�e data set is
reported byWeisberg (2005) who notes that the source of the data is the Federal
Highway Administration. �e data set is available from R package alr3 (Weis-
berg, 2011) where it is labeled Fuel2001.

Gambling Objects: 47 British teenagers. Criterion: annual gambling ex-
penditure. Attributes: sex, socio-economic status, weekly income, verbal
score. Source: �e data were collected by Ide-Smith and Lea (1988). �e data
set is reported by Faraway (2005) and is electronically available from the asso-
ciated R package faraway (Faraway, 2011), where it is labeled teengamb.

Highway Objects: 39 segments of highway in Minnesota. Criterion: ac-
cident rate. Attributes: segment length, average daily tra�c count, truck
volume as a percent of total volume, speed limit, number of lanes, lane width,

148

shoulderwidth, number of signalized interchanges permile, number of freeway-
type interchanges per mile, number of access points per mile, highway type
(federal interstate highway, principal arterial highway, major arterial, other).
Source: �e data set is reported by Weisberg (2005) who notes that the data
were taken from an unpublished master’s paper in civil engineering by Carl
Ho�stedt. �e data set is available electronically from R package alr3 (Weis-
berg, 2011).

Hitter Objects: 322 hitters in North American Major League Baseball. Cri-
terion: annual salary at the beginning of the 1987 season. Attributes: 1986
performance: number of at bats, hits, home runs, runs scored, runs batted in,
walks, putouts, assists, errors; career performance: number of at bats, hits, home
runs, runs scores, runs batted in, walks; number of years in the major leagues;
division at the end of the 1986 season (East, West); league at the end of the 1986
season (American, National); league at the beginning of the 1987 season (Amer-
ican, National). Source: �e data set was prepared by the Statistical Graphics
Section of the American Statistical Association for the 1988 Annual Statistical
Meetings and is available from StatLib (Meyer and Vlachos, 1989).�e version
used in this work is fromFox (2008), includes corrections byHoaglin andVelle-
man (1995), and is electronically available from a website maintained by Fox
(2015).

Homeless Objects: 50 cities in the United States. Criterion: rate of home-
lessness. Attributes: mean temperature, unemployment rate, percentage of
inhabitants with incomes below the poverty line, vacancy rate, population, per-
centage of public housing, whether the city has rent control. Source:�e data
set was assembled by Tucker (1987) from Department of Housing and Urban
Development’s 1984Report to the Secretary on the Homeless and Emergency Shel-
ters and other sources.

Home Objects: 3281 homes sold in San Francisco. Criterion: sales price.
Attributes: number of bedrooms, interior area of the property in squarefeet,
lotsize of the property, year the property was built. Source: �e data were
reported in Adler (2010) and are available from the associated R package nut-
shell (Adler, 2012) with label sanfrancisco.home.sales.

Infant Objects: 105 nations. Criterion: infant-mortality rate. Attributes:
per-capita income, geographic location (Africa, Americas, Asia, Europe), whether
the country exports oil. Source: Rates of infant mortality were obtained by
Leinhardt and Wasserman (1979) from the editorial section of the New York
Times (Crittenden, 1975). �e data set is reported by Fox (2008) and is elec-
tronically available from a website maintained by the author (Fox, 2015).

appendix c. data sets 149

Laborsupply Objects: 5320 working men (in the US). Criterion: log of
hourly wage. Attributes: log of annual hours worked, number of children,
age, disability (yes/no), year. Source: �e data comes from the Panel Study of
Income Dynamics (PSID). It has been studied in Ziliak (1997). It is available
electronically from R package Ecdat (Croissant, 2013).

Lake Objects: 69 world lakes. Criterion: number of known crustacean
zooplankton species present. Attributes: surface area,maximumdepth,mean
depth, speci�c conductance, elevation, latitude, longitude, distance to nearest
lake, number of lakes within 20 km, rate of photosynthesis. Source: �e data
set is reported by Weisberg (2005) who notes that the data were provided by S.
Dodson and discussed in part in Dodson (1992). �e data set is electronically
available from the R package alr3 (Weisberg, 2011).

Land Objects: 67 counties in Minnesota. Criterion: rent per acre paid in
1977 for agricultural land planted in alfalfa. Attributes: average rent for all
tillable land, density of dairy cows, proportion of pasture land, whether lim-
ing is required to grow alfalfa. Source: �e data set is reported by Weisberg
(2005) who notes that the data were collected by Douglas Ti�any. �e data set
is electronically available from R package alr3 (Weisberg, 2011) where it is la-
beled landrent.

Lung Objects: 654 children. Criterion: forced expiratory volume in liters.
Attributes: age in years, height in inches, gender, exposure to smoking. Source:
�e data were collected by Tager et al. (1979). �e data set is reported in Ek-
strom and Sørensen (2010) and is electronically available from the associated R
package isdals (Ekstrom and Sørensen, 2014) where it is labeled fev.

Mammal Objects: 62 mammal species. Criterion: average daily sleep. At-
tributes: body weight, brain weight, maximum life span, gestation time, pre-
dation index, sleep exposure index, overall danger index.. Source: �e data
are from a study by Allison and Cicchetti (1976). �e data set is available from
StatLib (Meyer and Vlachos, 1989), where it is labeled sleep.

Medical Expenditure Objects: 5574 US citizens. Criterion: annual med-
ical expenditures. Attributes: coinsurance rate, whether the person has an
individual deductible plan, log of the annual participation incentive payment,
whether the person has a physical limitation, the number of chronic diseases,
self-rate health (excellent, good, fair poor), log of annual family income, log of
family size, years of schooling of household head, exact age, sex, child, whether
household head is black. Source: �e data comes from the RAND Health In-
surance Experiment (RHIE). It has been studied in Deb and Trivedi (2002). It is
available electronically fromR package Ecdat (Croissant, 2013) where it is called
medexp.

150

Men Objects: 34 famous men. Criterion: mean attractiveness rating. At-
tributes: mean likeability rating, name recognition, whether theman isAmer-
ican. Source: �is prediction problem is from a study by Czerlinski et al.
(1999). �e data were collected by Henss (1996) with the participation of 115
male and 131 female Germans, in ages ranging from 17 to 66 years old.

Mileage Objects: 398 cars built in 1970–1982. Criterion: mileage. At-
tributes: number of cylinders, engine displacement, horsepower, vehicleweight,
time to accelerate from 0 to 60 mph, model year, origin (American, European,
Japanese). Source: �e data set was prepared by the Committee on Statistical
Graphics of the American Statistical Association for its Second Exposition of
Statistical Graphics Technology, held in conjunction with the Annual Meetings
in Toronto, August 15–18, 1983. It is electronically available from StatLib (Meyer
and Vlachos, 1989), where it is labeled cars. �e version used in the current
work is from theUCIMachine LearningRepository (Bache andLichman, 2013),
named Auto+MPG, in which 8 of the original cars were removed because their
mileage values were missing.

Mine Objects: 44 coal mines in the Appalachian region of western Virginia.
Criterion: number of fractures in upper seams of coal mines. Attributes:
inner burden thickness, percent extraction of the lower previously mined seam,
lower seam height, duration of operation. Source: �e data set is reported by
Montgomery et al. (2001) and is electronically available from the associated R
packagempg (Braun, 2012) where it is labeled p13.7.

Monet Objects: 430 sales of paintings by Monet. Criterion: sale price.
Attributes: height of the painting, width of the painting, whether the painting
is signed, auction house where sale took place. Source:�e data set is reported
by Greene (2003). It is electronically available from a website maintained by the
author (Greene, 2015), where it is labeled data on sales of Monet paintings.

Mortality Objects: 60 metropolitan areas in the United States. Criterion:
mortality rate. Attributes: average annual precipitation, average January tem-
perature, average July temperature, percent population aged 65 or older, average
household size, median school years completed by those over 22, percent hous-
ing units that are sound and with all facilities, humidity, population density in
urbanized areas, percent nonwhite population in urbanized areas, percent em-
ployed in white collar occupations, percentage of families with income less than
$3000, relative hydrocarbon pollution potential, relative nitric oxides pollution
potential, relative sulfur dioxide pollution potential, annual average relative hu-
midity. Source:�e data set was assembled by McDonald and Schwing (1973).
It is electronically available from StatLib (Meyer and Vlachos, 1989), where it is
labeled pollution.

appendix c. data sets 151

Movie Objects: 62 movies. Criterion: �rst-run box o�ce in the United
States. Attributes: production budget, index of star poser, whether the movie
is a sequel, indicator for an action �lm, indicator for comedy, indicator for an-
imation, indicator for horror, MPAA rating(G, PG, PG13, R), trailer views at
traileraddict.com, message board comments at comingsoon.net, attention at
fandango.com, percentage of Fandango votes for “can’t wait to see”. Source:
�e data set is reported by Greene (2003) and is electronically available from a
website maintained by the author (Greene, 2015), where it is labeledmovie buzz
data.

Mussel Objects: 44 rivers in eastern United States. Criterion: number of
freshwater mussel species. Attributes: area of drainage basins, amount of dis-
solved solids, nitrate concentration, hydronium concentration, number of in-
tervening rivers to four major species-source river systems: Alabama-Coosa,
Apalachicola, Savannah, and St. Lawrence. Source: �e data are from an arti-
cle by Sepkoski and Rex (1974). �e data set is available electronically from an
online repository maintained byWinner (2015), where the data set is described
as freshwater mussel species in US Rivers.

News Objects: 39797 news articles (online). Criterion: number of shares
in social networks. Attributes: 58 attributes in total, of which many are word
statistics1. Source: �e original data are from the website www.mashable.com. 1 For a complete description of all predictors,

please see https://archive.ics.uci.edu/

ml/datasets/Online+News+Popularity.
�e data set was studied in Fernandes et al. (2015). It is available from the UCI
Machine Learning Repository (Bache and Lichman, 2013).

Obesity Objects: 136 children. Criterion: somatotype (a scale of body type,
ranging from 1, very thin, to 7, obese). Attributes: sex, body measurements at
ages 2, 9, and 18: height, weight, leg circumference, strength. Source:�e data
were collected by Tuddenham and Snyder (1954) on children born in Berkeley,
California, between January 1928 and June 1929. �e data set is reported by
Weisberg (2005) and is electronically available from the associated R package
alr3 where it is labeled BGSall.

Occupation Objects: 36 occupations. Criterion: prestige rating of the Na-
tionalOpinionResearchCenter (NORC).Attributes: suicide rate amongmales
aged 20–64,median income,mediannumber of school years completed.. Source:
�e data set was assembled by Labovitz (1970) using data from the U.S. Census
of 1950 and prestige rankings obtained byNORC in its 1947 survey. It is reported
in a book by Hand et al. (1994) with identifying number 490 and label prestige,
income, education, and suicide rates for 36 occupations.

Pinot Objects: 38 samples of Pinot Noir wine. Criterion: quality. At-
tributes: clarity, aroma, body, �avor, oakiness, region. Source: �e data set

www.mashable.com
https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity
https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity

152

is reported by Montgomery et al. (2001) and is electronically available from as-
sociated R packageMPV (Braun, 2012), where it is labeled table.b11.

Pitcher Objects: 206 pitchers in North American Major League Baseball.
Criterion: annual salary at the beginning of the 1987 season. Attributes:
1986 performance: wins, losses, earned run average, game appearances, innings
pitched, games saved; career performance: wins, losses, earned run average,
game appearances, innings pitched, games saved; years inmajor leagues; league
at the end of 1986 (American, National); league at the beginning of the 1987 sea-
son (American, National). Source:�e data set was prepared by the Statistical
Graphics Section of the American Statistical Association for the 1988 Annual
Statistical Meetings and is available from StatLib (Meyer and Vlachos, 1989).
�e version used in this work is from Fox (2008) and is electronically available
from a website maintained by the author (Fox, 2015).

Plasma Objects: 315 adults. Criterion: Plasma retinol level. Attributes:
age, sex, bodymass index, daily caloric intake, daily fat intake, daily �ber intake,
daily cholesterol intake, dietary beta-carotene consumed per day, dietary retinol
consumed per day, number of alcoholic drinks consumed per week, smoking
status (never smoked, former smoker, current smoker), vitamin use (o�en, used
but not o�en, not used). Source: �e data set was made available by�erese
Stukel, Dartmouth Hitchcock Medical Center, at StatLib (Meyer and Vlachos,
1989), where it is labeled Plasma Retinol. Dr. Stukel notes that a related publi-
cation is by Nierenberg et al. (1989).

Prefecture Objects: 45 prefectures in Japan. Criterion: number of emi-
grants in the Paci�c Northwest in 1911–1912 from the prefecture (per million
of the prefecture’s population). Attributes: percentage of land cultivated by
tenant farmlands, change in ratio of tenant farmlands between 1883 and 1907,
average area of arable land per farm, number of government contracted laborers
sent toHawaii, whether any of the 18 pioneer Japanese immigrants to the Paci�c
Northwest were from the prefecture. Source: �e data are from an article by
Murayama (1991).�e data set is available electronically from an online repos-
itory maintained by Winner (2015), where the data set is described as Japanese
emigration to Paci�c Northwest 1880–1915.

Prostate Objects: 97 patients with prostate cancer. Criterion: logarithm of
prostate-speci�c antigen. Attributes: log(cancer volume), log(prostateweight),
age, log(amount of benignprostatic hyperplasia), seminal vesicle invasion, log(capsular
penetration), Gleason score, percentage Gleason score 4 or 5. Source:�e data
appears in Stamey et al. (1989). �e data set is publicly available from the R
package lasso2 (Lokhorst et al., 2014), where it is labeled Prostate.

appendix c. data sets 153

Reactor Objects: 32 light water reactors constructed in the United States in
the late 1960s and early 1970s. Criterion: construction cost. Attributes:
date on which the construction permit was issued (measured in years since
January 1, 1900), time between application for and issue of the construction
permit, time between issue of operating license and construction permit, net
capacity, whether a prior light water reactor existed at the same site, whether
the location is in the north-east region of the United States, Whether a cool-
ing tower is used, whether the nuclear steam supply system was manufactured
by Babcock-Wilcox, cumulative number of power plants constructed by each
architect-engineer, whether there was a partial turnkey guarantee. Source:�e
data set is reported by Cox and Snell (1981) and Davison (2003). It is electroni-
cally available from R package SMPracticals (Davison, 2013), where it is labeled
nuclear.

Rebellion Objects: 32 Romanian counties in 1907. Criterion: proportion of
villages in which rebellious events took place in the Romanian peasant rebel-
lion of 1907, labelled spread. Attributes: proportion of arable land devoted to
wheat, proportion of rural population that is illiterate, strength of middle peas-
antry (measured by the proportion of land owned in units of 7 to 50 hectares),
Gini coe�cient of inequality of landownership, population, region (Northern,
South Central, Southwest, Eastern). Source: �e data set was assembled by
Chirot and Ragin (1975). Partial data set is reported by Fox (2008) and is elec-
tronically available from a website maintained by the author (Fox, 2015).

Recycle Objects: 31 Scottish local authorities. Criterion: weekly recyclate
yield. Attributes: weekly recycling capacity, weekly residual capacity, num-
ber of principal materials collected, number of extended materials collected,
frequency of recycling collection, frequency of residual collection, type of sort
(comingled, curbside sort, dual service, singlematerial). Source:�e datawere
obtained by Baird et al. (2013) from Scottish local authorities. Partial data set is
available electronically froman online repositorymaintained by Winner (2015),
where the data set is described as recycling capacity, items collected and average
yield for Scottish local authorities.

Rent Objects: 2053 apartments in Munich, Germany. Criterion: rent per
square-meter in euros. Attributes: size, number of rooms, year of construc-
tion, whether the apartment is located at a good address, whether the apart-
ment is located at the best address, whether the apartment has warm water,
whether the apartment has central heating, whether the bathroom has tiles,
whether there is special furniture in the bathroom, whether the apartment has
an upmarket kitchen. Source:�e data set is reported in Fahrmeir et al. (2012)
and is electronically available from R package catdata (Schauberger and Tutz,
2014).

154

Salary Objects: 52 professors at a Midwestern college in the United States.
Criterion: academic year salary. Attributes: sex, rank (assistant professor,
associate professor, full professor), number of years in current rank, the highest
degree earned (doctorate, masters), number of years since highest degree was
earned. Source: �e data set is reported by Weisberg (2005) and is electroni-
cally available from associated R package alr3 (Weisberg, 2011).

SAT Objects: 50 US states. Criterion: average total score on the SAT,
1994-95. Attributes: avg. expenditure per pupil, avg. pupil/teacher ratio,
avg. salary of teachers, percentage of eligible students. Source: �e data were
collected by Guber (1999). �e data set is electronically available from the R
package faraway (Faraway, 2011).

Schooling Objects: 3010 individuals in the US. Criterion: log of wage. At-
tributes: lived in smsa 1966, lived in smsa in 1976, grew up near 2-yr college,
grew up near 4-yr college, grew up near 4-year public college, grew up near 4-
year private college, education in 1976, education in 1966, age in 1976, lived with
mom and dad at age 14, single mom at 14, step parent at 14, lived in south 1966,
lived in south in 1976, mom-dad education class (1-9), black, enrolled in 1976,
the kww score, normed IQ score, married in 1976, library card in home at age
14, experience in 1976. Source: �e data set comes from the National Longi-
tudinal Survey of Young Men (NLSYM) and has been used by Card (1993). It is
available electronically from R package Ecdat (Croissant, 2013).

Tip Objects: 244 parties dining in a restaurant. Criterion: tip rate. At-
tributes: dollar amount of the bill, size of the party, sex of the bill payer, day
of the week, time of the day, whether there were smokers in the party. Source:
Data were recorded by a food server in a restaurant located in a suburban shop-
ping mall in the United States during an interval of two and a half months in
early 1990. �e data set is reported in a collection of case studies for business
statistics (Bryant and Smith, 1995). It is electronically available from theR pack-
age reshape (Wickham, 2007).

Vote Objects: 159 counties in Georgia, USA. Criterion: proportion of un-
counted votes in the 2000 presidential election. Attributes: type of voting
equipment used (optical scan with central count, optical scan with precinct
count, punch card, lever, paper), whether the county is in Atlanta, whether the
county is urban or rural, proportion of African Americans, economic status
(rich, middle, poor). Source: �e data set was assembled by Meyer (2002). It
is reported by Faraway (2005) and is electronically available from the associated
R package faraway (Faraway, 2011), where it is labeled gavote.

Wages Objects: 4360 males in the US (from 1980 to 1987). Criterion: log
of wage. Attributes: year, years of schooling, years of experience, whether the

appendix c. data sets 155

wage has been set by collective bargaining, ethnicity, whether married, whether
health problem, industry (12 levels), occupation (9 levels), residence (rural area,
north east, nothern central, south). Source: �e data set comes from the Na-
tional Longitudinal Survey (NLS Youth Sample) and has been used by Vella and
Verbeek (1998). It is available electronically from R package Ecdat (Croissant,
2013) where it is calledMales.

White wine Objects: 4898 white wines. Criterion: quality score (between
0 and 10). Attributes: �xed acidity, volatile acidity, citric acid, residual sugar,
chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, al-
cohol. Source: �is data set comes from a study by Cortez et al. (2009). It
is available from the UCI Machine Learning Repository (Bache and Lichman,
2013).

B I BL IOGRAPHY

Adler, Joseph (2010). R in a nutshell: A desktop quick reference. O’Reilly Media.
Adler, Joseph (2012). nutshell: Data for “R in a nutshell”. R package.
Ahlgren, John (2014). �e probability distribution for draws until �rst success

without replacement. arXiv: 1404.1161 [math.PR].
Algorta, Simón and Özgür Şimşek (2019).�e game of Tetris in machine learn-

ing. arXiv: 1905.01652 [cs.LG].
Allison, Truett andDomenic V. Cicchetti (1976). “Sleep inmammals: Ecological
and constitutional correlates”. In: Science 194.4266, pp. 732–734.

Amarel, Saul (1968). “On representations of problems of reasoning about ac-
tions”. In:Machine Intelligence 3, pp. 131–171.

Anderson, John R. and Robert Milson (1989). “Human memory: An adaptive
perspective.” In: Psychological Review 96.4, p. 703.

Bache,Kevin andMocheLichman (2013).UCI machine learning repository. http:
//archive.ics.uci.edu/ml.

Baird, Jim, Robin Curry, and Tim Reid (2013). “Development and application
of a multiple linear regression model to consider the impact of weekly waste
container capacity on the yield from kerbside recycling programmes in Scot-
land”. In:Waste Management & Research 31.3, pp. 306–314.

Barron, Francis H. and Bruce E. Barrett (1996). “Decision quality using ranked
attribute weights”. In:Management Science 42.11, pp. 1515–1523.

Baucells, Manel, Juan A. Carrasco, and RobinM. Hogarth (2008). “Cumulative
dominance and heuristic performance in binary multiattribute choice”. In:
Operations Research 56.5, pp. 1289–1304.

Bellemare, Marc G., Yavar Naddaf, Joel Veness, and Michael Bowling (2013).
“�e arcade learning environment:An evaluation platform for general agents”.
In: Journal of Arti�cial Intelligence Research 47, pp. 253–279.

Bellman, Richard (1957). Dynamic programming. Princeton University Press.
Belloni, Alexandre andVictor Chernozhukov (2013). “Least squares a�ermodel
selection in high-dimensional sparsemodels”. In: Bernoulli 19.2, pp. 521–547.

Bendor, JonathanB., Sunil Kumar, andDavidA. Siegel (2009). “Satis�cing:A’pretty
good’heuristic”. In:�e BE Journal of �eoretical Economics 9.1.

Bengio, Yoshua, JérômeLouradour, RonanCollobert, and JasonWeston (2009).
“Curriculum learning”. In: Proceedings of the 26th International Conference
on Machine Learning, pp. 41–48.

https://arxiv.org/abs/1404.1161
https://arxiv.org/abs/1905.01652
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

158

Bobko, Philip, Philip L. Roth, and Maury A. Buster (2007). “�e usefulness of
unit weights in creating composite scores: A literature review, application
to content validity, and meta-analysis”. In:Organizational Research Methods
10.4, pp. 689–709.

Braun, Daniel A., Pedro A. Ortega, Evangelos �eodorou, and Stefan Schaal
(2011). “Path integral control and bounded rationality”. In: 2011 IEEE Sympo-
sium on Adaptive Dynamic Programming and Reinforcement Learning (AD-
PRL), pp. 202–209.

Braun, W. John (2012). MPV: Data sets from Montgomery, Peck and Vining’s
book. R package.

Breiman, Leo (2001). “Random forests”. In:Machine Learning 45.1, pp. 5–32.
Breiman, Leo, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone
(2017). Classi�cation and regression trees. Routledge.

Brighton, Henry (2006). “Robust inference with simple cognitive models.” In:
AAAI Spring Symposium: Between a Rock and a Hard Place: Cognitive Science
Principles Meet AI-Hard Problems, pp. 17–22.

Brighton, Henry (2020). “Statistical foundations of ecological rationality”. In:
Economics 14.1.

Brockman,Greg,VickiCheung, LudwigPettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba (2016). Openai gym. arXiv: 1606 .
01540 [cs.LG].

Brooks,�omas F., D. Stuart Pope, andMichael A.Marcolini (1989).Airfoil self-
noise and prediction. National Aeronautics, Space Administration, O�ce of
Management, Scienti�c, and Technical Information Division.

Brown, Stacey L., Joby Joseph, andMark Stopfer (2005). “Encoding a temporally
structured stimulus with a temporally structured neural representation”. In:
Nature Neuroscience 8.11, p. 1568.

Bryant, Peter G. andMarlene A. Smith (1995). Practical data analysis: Case stud-
ies in business statistics. Richard D. Irwin Publishing.

Buckmann, Marcus and Özgür Şimşek (2017). “Decision heuristics for compar-
ison: How good are they?” In: Imperfect Decision Makers: Admitting Real-
World Rationality. PMLR 58, pp. 1–11.

Caplin, Andrew,MarkDean, andDanielMartin (2011). “Search and satis�cing”.
In: American Economic Review 101.7, pp. 2899–2922.

Card, David (1993). Using geographic variation in college proximity to estimate
the return to schooling. Tech. rep. National Bureau of Economic Research.

Chambolle, Antonin (2004). “An algorithm for total variation minimization
and applications”. In: Journal of Mathematical Imaging and Vision 20.1, pp. 89–
97.

Chandak, Yash, Georgios�eocharous, James Kostas, Scott Jordan, and Philip
S.�omas (2019). Learning action representations for reinforcement learning.
arXiv: 1902.00183 [cs.LG].

https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1902.00183

BIBLIOGRAPHY 159

Chirot, Daniel and Charles Ragin (1975). “�e market, tradition and peasant
rebellion: �e case of Romania in 1907”. In: American Sociological Review,
pp. 428–444.

Chu, Singat (2001). “Pricing the C’s of diamond stones”. In: Journal of Statistics
Education 9.2.

Claudy, John G. (1972). “A comparison of �ve variable weighting procedures”.
In: Educational and Psychological Measurement 32.2, pp. 311–322.

Cortez, Paulo, António Cerdeira, Fernando Almeida, Telmo Matos, and José
Reis (2009). “Modeling wine preferences by datamining fromphysicochem-
ical properties”. In: Decision Support Systems 47.4, pp. 547–553.

Cox, David R. and E. Joyce Snell (1981). Applied statistics: Principles and exam-
ples. Chapman and Hall.

Crittenden, Ann (1975). “Vital dialogue is beginning between the rich and the
poor”. In:�e New York Times, September 28 1975, E–3.

Croissant, Yves (2013). Ecdat: Data sets for econometrics. R package.
Cuzan,AlfredG. andCharlesM.Bundrick (2009). “Predicting presidential elec-
tionswith equallyweighted regressors in Fair’s equation and the �scalmodel”.
In: Political Analysis 17.3, pp. 333–340.

Czerlinski, Jean, Gerd Gigerenzer, and Daniel G. Goldstein (1999). “How good
are simple heuristics?” In: Simple heuristics that make us smart. Ed. by Gerd
Gigerenzer, PeterM. Todd, and theABCResearchGroup. OxfordUniversity
Press, pp. 97–118.

Dana, Jason and Robyn M. Dawes (2004). “�e superiority of simple alterna-
tives to regression for social science predictions”. In: Journal of Educational
and Behavioral Statistics 29.3, pp. 317–331.

Dana, Jason and Rick �omas (2006). “In defense of clinical judgment... and
mechanical prediction”. In: Journal of Behavioral Decision Making 19.5, pp. 413–
428.

Davis-Stober, Clintin P. (2011). “A geometric analysis of when �xed weight-
ing schemes will outperform ordinary least squares”. In: Psychometrika 76.4,
pp. 650–669.

Davis-Stober, Clintin P., Jason Dana, and David V. Budescu (2010). “A con-
strained linear estimator formultiple regression”. In:Psychometrika 75.3, pp. 521–
541.

Davison, Anthony C. (2003). Statistical models. Cambridge University Press.
Davison,AnthonyC. (2013). SMPracticals: Practicals for use with Davison’s (2003)

‘Statistical models’. R package.
Dawes, Robyn M. (1979). “�e robust beauty of improper linear models in de-
cision making.” In: American Psychologist 34.7, p. 571.

Dawes, Robyn M. and Bernard Corrigan (1974). “Linear models in decision
making”. In: Psychological Bulletin 81.2, pp. 95–106.

DeMiguel, Victor, Lorenzo Garlappi, Francisco J. Nogales, and Raman Uppal
(2009a). “A generalized approach to portfolio optimization: Improving per-

160

formance by constraining portfolio norms”. In: Management Science 55.5,
pp. 798–812.

DeMiguel, Victor, Lorenzo Garlappi, and Raman Uppal (2009b). “Optimal ver-
sus naive diversi�cation: How ine�cient is the 1/N portfolio strategy?” In:
Review of Financial Studies 22.5, pp. 1915–1953.

Dean, �omas L. and Mark S. Boddy (1988). “An analysis of time-dependent
planning.” In: Proceedings of the Seventh AAAI National Conference on Arti-
�cial Intelligence. Vol. 88, pp. 49–54.

Deb, Partha and Pravin K. Trivedi (2002). “�e structure of demand for health
care: Latent class versus two-part models”. In: Journal of Health Economics
21.4, pp. 601–625.

Dodson, Stanley (1992). “Predicting crustacean zooplankton species richness.”
In: Limnology and Oceanography 37.4, pp. 848–856.

Domingos, Pedro (2000). “Auni�ed bias-variance decomposition”. In:Proceed-
ings of the 17th International Conference on Machine Learning, pp. 231–238.

Dulac-Arnold, Gabriel, Richard Evans, Hado van Hasselt, Peter Sunehag, Tim-
othy Lillicrap, Jonathan Hunt, Timothy Mann, �eophane Weber, �omas
Degris, and Ben Coppin (2015). Deep reinforcement learning in large discrete
action spaces. arXiv: 1512.07679 [cs.LG].

Dulac-Arnold, Gabriel, Daniel Mankowitz, and Todd Hester (2019). Challenges
of real-world reinforcement learning. arXiv: 1904.12901 [cs.LG].

Edwards, David J., Gary D. Holt, and Frank C. Harris (2000). “A comparative
analysis between the multilayer perceptron ‘neural network’ and multiple
regression analysis for predicting construction plant maintenance costs”. In:
Journal of Quality in Maintenance Engineering 6.1, pp. 45–61.

Efron, Bradley and Trevor Hastie (2013). lars: Least angle regression, Lasso and
forward stagewise. R package.

Efron, Bradley, Trevor Hastie, Iain Johnstone, and Robert Tibshirani (2004).
“Least angle regression”. In:�e Annals of Statistics 32.2, pp. 407–499.

Ehrenberg, Andrew S. C. (1982). “How good is best?” In: Journal of the Royal
Statistical Society. Series A (General) 145.3, p. 364.

Ehrlich, Isaac (1973). “Participation in illegitimate activities: A theoretical and
empirical investigation”. In: Journal of Political Economy 81, pp. 521–565.

Ein-Dor, Phillip and Jacob Feldmesser (1987). “Attributes of the performance
of central processing units: A relative performance prediction model”. In:
Communications of the ACM 30.4, pp. 308–317.

Einhorn, Hillel J. and Robin M. Hogarth (1975). “Unit weighting schemes for
decisionmaking”. In:Organizational Behavior and Human Performance 13.2,
pp. 171–192.

Ekstrom, Claus T. and Helle Sørensen (2010). Introduction to statistical data
analysis for the life sciences. CRC Press.

Ekstrom, Claus T. and Helle Sørensen (2014). isdals: Provides datasets for “In-
troduction to statistical data analysis for the life sciences”. R package.

https://arxiv.org/abs/1512.07679
https://arxiv.org/abs/1904.12901

BIBLIOGRAPHY 161

Elman, Je�rey L. (1993). “Learning and development in neural networks: �e
importance of starting small”. In: Cognition 48.1, pp. 71–99.

Elster, Jon (1977). “Ulysses and the sirens: A theory of imperfect rationality”. In:
Social Science Information 16.5, pp. 469–526.

Etzioni, Oren (1989). “Tractable decision-analytic control.” In: Proceedings of
the First International Conference on Principles of Knowledge Representation
and Reasoning 89, pp. 114–125.

Fahrmeir, Ludwig, Rita Künstler, Iris Pigeot, and Gerhard Tutz (2012). Statistik:
Der weg zur datenanalyse. Springer Berlin Heidelberg.

Farahmand,Amir-massoud,MohammadGhavamzadeh,Csaba Szepesvári, and
Shie Mannor (2008). “Regularized policy iteration.” In: Advances in Neural
Information Processing Systems, pp. 441–448.

Farahmand,Amir-massoud,MohammadGhavamzadeh,Csaba Szepesvári, and
ShieMannor (2009). “Regularized �ttedQ-iteration for planning in continuous-
spaceMarkovian decision problems”. In: 2009 American Control Conference.
IEEE, pp. 725–730.

Faraway, Julian (2005).Extending linear models with R: Generalized linear, mixed
e�ects and nonparametric regression models. Chapman & Hall/CRC.

Faraway, Julian (2011). faraway: Functions and datasets for books by Julian Far-
away. R package.

Farebrother, Jesse, Marlos C. Machado, and Michael Bowling (2018). General-
ization and regularization in DQN. arXiv: 1810.00123 [cs.LG].

Fern, Alan, SungWook Yoon, and Robert Givan (2004). “Approximate policy
iteration with a policy language bias”. In: Advances in Neural Information
Processing Systems, pp. 847–854.

Fernandes, Kelwin, Pedro Vinagre, and Paulo Cortez (2015). “A proactive intel-
ligent decision support system for predicting the popularity of online news”.
In: Portuguese Conference on Arti�cial Intelligence, pp. 535–546.

Fernández-Delgado, Manuel, Eva Cernadas, Senén Barro, and Dinani Amorim
(2014). “Do we need hundreds of classi�ers to solve real world classi�cation
problems?” In: Journal of Machine Learning Research 15.1, pp. 3133–3181.

Fishburn, Peter C. (1974). “Lexicographic orders, utilities and decision rules: A
survey”. In:Management Science 20.11, pp. 1442–1471.

Fox, John (2008).Applied regression analysis and generalized linear models. 2nd.
SAGE Publications.

Fox, John (2015). Data sets for ‘Applied regression analysis and generalized linear
models, second edition’. http://socserv.socsci.mcmaster.ca/jfox/
Books/Applied-Regression-2E/datasets/.

Franklin, Benjamin (1987).Writings. Library of America.
Friedman, Jerome H. (1997). “On bias, variance, 0/1—loss, and the curse-of-
dimensionality”. In: Data Mining and Knowledge Discovery 1.1, pp. 55–77.

Friedman, Jerome H., Trevor Hastie, Noah Simon, and Rob Tibshirani (2015).
glmnet: Lasso and elastic-net regularized generalized linear models. R package.

https://arxiv.org/abs/1810.00123
http://socserv.socsci.mcmaster.ca/jfox/Books/Applied-Regression-2E/datasets/
http://socserv.socsci.mcmaster.ca/jfox/Books/Applied-Regression-2E/datasets/

162

Friedman, JeromeH., TrevorHastie, andRobert Tibshirani (2001).�e elements
of statistical learning. Vol. 1. Springer.

Gabillon, Victor, Mohammad Ghavamzadeh, and Bruno Scherrer (2013). “Ap-
proximate dynamic programming�nally performswell in the gameofTetris”.
In: Advances in Neural Information Processing Systems, pp. 1754–1762.

Galesic,Mirta,Daniel Barkoczi, andKonstantinosV.Katsikopoulos (2018). “Smaller
crowds outperform larger crowds and individuals in realistic task condi-
tions”. In: Decision 5.1, p. 1.

Genewein, Tim, Felix Leibfried, Jordi Grau-Moya, and Daniel A. Braun (2015).
“Bounded rationality, abstraction, andhierarchical decision-making:An information-
theoretic optimality principle”. In: Frontiers in Robotics and AI 2, p. 27.

Gershman, Samuel J., Eric J. Horvitz, and Joshua B. Tenenbaum (2015). “Com-
putational rationality: A converging paradigm for intelligence in brains,minds,
and machines”. In: Science 349.6245, pp. 273–278.

Gigerenzer, Gerd and Henry Brighton (2009). “Homo heuristicus: Why biased
minds make better inferences”. In: Topics in Cognitive Science 1.1, pp. 107–
143.

Gigerenzer, Gerd andDanielG.Goldstein (1996). “Reasoning the fast and frugal
way: Models of bounded rationality.” In: Psychological Review 103, pp. 650–
669.

Gigerenzer, Gerd, Ralph Hertwig, and �orsten Pachur (2011). Heuristics: �e
foundations of adaptive behavior. Oxford University Press.

Gigerenzer, Gerd andReinhard Selten (2002).Bounded rationality:�e adaptive
toolbox. MIT Press.

Gigerenzer, Gerd, PeterM. Todd, and the the ABCResearchGroup (1999). Sim-
ple heuristics that make us smart. Oxford University Press.

Goldberg, Lewis R. (1972). “Parameters of personality inventory construction
and utilization: A comparison of prediction strategies and tactics.” In:Mul-
tivariate Behavioral Research Monographs.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning.
Vol. 1. MIT Press.

Graefe, Andreas (2015). “Improving forecasts using equally weighted predic-
tors”. In: Journal of Business Research 68.8, pp. 1792–1799.

Grau-Moya, Jordi (2016). “Decision-making under bounded rationality andmodel
uncertainty: An information-theoretic approach”. PhD�esis. EberhardKarls
Universität Tübingen.

Graves, Alex,MarcG. Bellemare, JacobMenick, RémiMunos, andKorayKavukcuoglu
(2017). “Automated curriculum learning for neural networks”. In: Proceed-
ings of the 34th International Conference on Machine Learning, pp. 1311–1320.

Greene, William H. (2003). Econometric analysis. Pearson Education India.
Greene, William H. (2015). Online data archive. http://pages.stern.nyu.

edu/∼wgreene/Text/econometricanalysis.htm.
Guber, Deborah C. (1999). “Getting what you pay for:�e debate over equity in
public school expenditures”. In: Journal of Statistics Education 7.2.

http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm
http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm

BIBLIOGRAPHY 163

Gupta, Abhishek, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey
Levine (2018). Meta-reinforcement learning of structured exploration strate-
gies. arXiv: 1802.07245 [cs.LG].

Hand, David J., Fergus Daly, D. Lunn, Kevin J. McConway, and E. Ostrowski
(1994). A handbook of small data sets. Chapman & Hall/CRC.

Hansen, Nikolaus and Andreas Ostermeier (2001). “Completely derandomized
self-adaptation in evolution strategies”. In: Evolutionary Computation 9.2,
pp. 159–195.

Helversen, Bettina von and Jörg Rieskamp (2008). “�emappingmodel: A cog-
nitive theory of quantitative estimation.” In: Journal of Experimental Psychol-
ogy: General 137.1, pp. 73–96.

Henss, Ronald (1996). “�e attractiveness of prominent people”. Unpublished
manuscript at the Fachrichtung Psychologie, University of Saarbrücken.

Hertwig, Ralph, Ulrich Ho�rage, and Laura Martignon (1999). “Quick estima-
tion”. In: Simple heuristics that make us smart. Ed. by Gerd Gigerenzer, Peter
M. Todd, and the ABC Research Group. Oxford University Press, pp. 209–
234.

Hoaglin, David C. and Paul F. Velleman (1995). “A critical look at some anal-
yses of Major League Baseball salaries”. In: American Statistician 49.4266,
pp. 277–285.

Hoerl, Arthur E. and Robert W. Kennard (1970). “Ridge regression: Biased es-
timation for nonorthogonal problems”. In: Technometrics 12.1, p. 55.

Hogarth, Robin M. and Natalia Karelaia (2005). “Ignoring information in bi-
nary choice with continuous variables: When is less ‘more’?” In: Journal of
Mathematical Psychology 49.2, pp. 115–124.

Holte, Robert C. (1993). “Very simple classi�cation rules perform well on most
commonly used datasets”. In:Machine Learning 11.1, pp. 63–90.

Horvitz, Eric J. (1987). “Reasoning about beliefs and actions under computa-
tional resource constraints”. In: Proceedings of the �ird Conference on Un-
certainty in Arti�cial Intelligence, pp. 429–447.

Hosmer, David W. and Stanley Lemeshow (2000). Applied logistic regression.
Wiley.

Howell, David C. (2009). Statistical methods for psychology. Cengage Learning.
Ide-Smith, Susan G. and Stephen E. G. Lea (1988). “Gambling in young adoles-
cents”. In: Journal of Gambling Behavior 4.2, pp. 110–118.

Jarvis, David R. (1997). “Nitrogen levels in long bones from co�n burials in-
terred for periods of 26–90 years”. In: Forensic Science International 85.3,
pp. 199–208.

Kahneman, Daniel and Amos Tversky (2013). “Prospect theory: An analysis of
decision under risk”. In: Handbook of the fundamentals of �nancial decision
making: Part I. World Scienti�c, pp. 99–127.

Katsikopoulos, Konstantinos V. (2011). “Psychological heuristics for making in-
ferences: De�nition, performance, and the emerging theory and practice”.
In: Decision Analysis 8.1, pp. 10–29.

https://arxiv.org/abs/1802.07245

164

Katsikopoulos, KonstantinosV. (2014). “Bounded rationality:�e two cultures”.
In: Journal of Economic Methodology 21.4, pp. 361–374.

Katsikopoulos, Konstantinos V., IanN. Durbach, and�eodor J. Stewart (2018).
“When should we use simple decision models? A synthesis of various re-
search strands”. In: Omega 81, pp. 17–25.

Katsikopoulos, Konstantinos V. and LauraMartignon (2006). “Naive heuristics
for paired comparisons: Some results on their relative accuracy”. In: Journal
of Mathematical Psychology 50.5, pp. 488–494.

Katsikopoulos, Konstantinos V., Lael J. Schooler, and Ralph Hertwig (2010).
“�e robust beauty of ordinary information.” In: Psychological Review 117.4,
p. 1259.

Katsikopoulos, Konstantinos V., Özgür Şimşek, Markus Buckmann, and Gerd
Gigerenzer (2020). Classi�cation in the wild. MIT Press.

Klein, Gary, Steve Wolf, Laura Militello, and Caroline Zsambok (1995). “Char-
acteristics of skilled option generation in chess”. In:Organizational Behavior
and Human Decision Processes 62.1, pp. 63–69.

Krueger, Kai A. and Peter Dayan (2009). “Flexible shaping: How learning in
small steps helps”. In: Cognition 110.3, pp. 380–394.

Kuhn, Harold W. and Albert W. Tucker (2014). “Nonlinear programming”. In:
Traces and Emergence of Nonlinear Programming. Ed. by G. Giorgi and T.
Kjeldsen. Birkhäuser, Basel, pp. 247–258.

Labovitz, Sanford (1970). “�e assignment of numbers to rank order categories”.
In:�e American Sociological Review 35, pp. 515–524.

Lagoudakis, Michail G. and Ronald Parr (2003). “Reinforcement learning as
classi�cation: Leveraging modern classi�ers”. In: Proceedings of the 20th In-
ternational Conference on Machine Learning, pp. 424–431.

Laughlin, James E. (1978). “Comment on estimating coe�cients in linear mod-
els: It don’t make no nevermind.” In: Psychological Bulletin 85.2, pp. 247–253.

Lazaric, Alessandro,MohammadGhavamzadeh, andRémiMunos (2016). “Anal-
ysis of classi�cation-based policy iteration algorithms”. In: Journal of Ma-
chine Learning Research 17.1, pp. 583–612.

LeCun, Yann, Yoshua Bengio, and Geo�rey Hinton (2015). “Deep learning”. In:
Nature 521.7553, pp. 436–444.

Leinhardt, Samuel and Stanley S. Wasserman (1979). “Exploratory data analy-
sis: An introduction to selected methods”. In: Sociological Methodology 10,
pp. 311–365.

Lewin, Kurt, TamaraDembo, Leon Festinger, and Pauline S. Sears (1944). “Level
of aspiration.” In: Personality and the behavior disorders. Ed. by J. M. Hunt.
Ronald Press.

Li, Lihong, VadimBulitko, andRussell Greiner (2007). “Focus of attention in re-
inforcement learning.” In: Journal of Universal Computer Science 13.9, pp. 1246–
1269.

Liaw, Andy andMatthewWiener (2002). “Classi�cation and regression by ran-
domForest”. In: R news 2.3, pp. 18–22.

BIBLIOGRAPHY 165

Lichtenberg, Jan M. and Özgür Şimşek (2017). “Simple regression models”. In:
Imperfect Decision Makers: Admitting Real-World Rationality. PMLR58, pp. 13–
25.

Lichtenberg, Jan M. and Özgür Şimşek (2019a). Iterative policy-space expansion
in reinforcement learning. arXiv: 1912.02532 [cs.LG].

Lichtenberg, Jan M. and Özgür Şimşek (2019b). “Regularization in directable
environments with application to Tetris”. In: Proceedings of the 36th Interna-
tional Conference on Machine Learning, pp. 3953–3962.

Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa,David Silver, andDaanWierstra (2015).Continuous control
with deep reinforcement learning. arXiv: 1509.02971 [cs.LG].

Lock, Robin H. (1993). “1993 New car data”. In: Journal of Statistics Education
1.1.

Lokhorst, Justin, Bill Venables, Berwin Turlach, and Martin Maechler (2014).
lasso2: L1 constrained estimation aka ‘lasso’. R package.

Loth, Manuel, Manuel Davy, and Philippe Preux (2007). “Sparse temporal dif-
ference learning using LASSO”. In: 2007 IEEE International Symposium on
Approximate Dynamic Programming and Reinforcement Learning, pp. 352–
359.

Maindonald, John and W. John Braun (2010). Data analysis and graphics using
R: An example-based approach. Cambridge University Press.

Maindonald, John andW. John Braun (2013).DAAG: Data analysis and graphics
data and functions. R package.

Mandal, Baidya N. and Jun Ma (2016). nnlasso: Non-negative Lasso and Elastic
Net penalized generalized linear models. R package.

Martignon, Laura and Ulrich Ho�rage (1999). “Why does one-reason decision
makingwork”. In: Simple heuristics that make us smart. Ed. byGerdGigeren-
zer, Peter M. Todd, and the ABC Research Group, pp. 119–140.

Martignon, Laura andUlrichHo�rage (2002). “Fast, frugal, and�t: Simple heuris-
tics for paired comparison”. In:�eory and Decision 52.1, pp. 29–71.

Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green (1995).Microe-
conomic theory. Vol. 1. Oxford University Press.

McDonald, Gary C. and Richard C. Schwing (1973). “Instabilities of regression
estimates relating air pollution to mortality”. In: Technometrics 15, pp. 463–
482.

Meinshausen,Nicolai (2013). “Sign-constrained least squares estimation for high-
dimensional regression”. In: Electronic Journal of Statistics 7, pp. 1607–1631.

Meyer, Mary C. (2002). “Uncounted votes: Does voting equipment matter?” In:
Chance 15.4, pp. 33–38.

Meyer,Mike and Pantelis Vlachos (1989). StatLib. http://lib.stat.cmu.edu/.
Miller, Earl K. and Jonathan D. Cohen (2001). “An integrative theory of pre-
frontal cortex function”. In: Annual Review of Neuroscience 24.1, pp. 167–
202.

https://arxiv.org/abs/1912.02532
https://arxiv.org/abs/1509.02971
http://lib.stat.cmu.edu/

166

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-
ness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidje-
land, and Georg Ostrovski (2015). “Human-level control through deep rein-
forcement learning”. In: Nature 518.7540, p. 529.

Montgomery, Douglas C., Elizabeth A. Peck, and G. Geo�rey Vining (2001).
Introduction to linear regression analysis. 3rd. Wiley.

Morton, F. B. (1995). “Charting a school’s course”. In: Chicago, pp. 86–95.
Murayama, Yuzo (1991). “Information and emigrants: Interprefectural di�er-
ences of Japanese emigration to the Paci�c Northwest, 1880–1915”. In:�e
Journal of Economic History 51.1, pp. 125–147.

Narvekar, Sanmit, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Tay-
lor, and Peter Stone (2020). Curriculum learning for reinforcement learning
domains: A framework and survey. arXiv: 2003.04960 [cs.LG].

Nash, Warwick J., Tracy L. Sellers, Simon R. Talbot, Andrew J. Cawthorn, and
Wes B. Ford (1994). “�e population biology of abalone (haliotis species) in
Tasmania. I. Blacklip Abalone (h. rubra) from the north coast and islands of
Bass Strait”. In: Sea Fisheries Division, Technical Report 48.

Nierenberg, David W., �erese A. Stukel, John A. Baron, Bradley J. Dain, and
E. Robert Greenberg (1989). “Determinants of plasma levels of beta-carotene
and retinol”. In: American Journal of Epidemiology 130.3, pp. 511–521.

Oaksford, Mike and Nick Chater (2007). Bayesian rationality: �e probabilistic
approach to human reasoning. Oxford University Press.

Ortega, PedroA. (2011). “Auni�ed framework for resource-bounded autonomous
agents interacting with unknown environments”. PhD thesis. University of
Cambridge.

Ortega, Pedro A., Daniel A. Braun, Justin Dyer, Kee-Eung Kim, and Na�ali
Tishby (2015). Information-theoretic bounded rationality. arXiv: 1512.06789
[stat.ML].

Parpart, Paula, Matt Jones, and Bradley C. Love (2018). “Heuristics as Bayesian
inference under extreme priors”. In: Cognitive Psychology 102, pp. 127–144.

Penrose, Keith W., A. G. Nelson, and A. G. Fisher (1985). “Generalized body
composition prediction equation for men using simple measurement tech-
niques”. In:Medicine & Science in Sports & Exercise 17.2, p. 189.

Peterson, Gail B. (2004). “A day of great illumination: BF Skinner’s discovery of
shaping”. In: Journal of the Experimental Analysis of Behavior 82.3, pp. 317–
328.

R Core Team (2015). R: A language and environment for statistical computing. R
Foundation for Statistical Computing.

Radner, Roy (1975). “Satis�cing”. In: Optimization Techniques IFIP Technical
Conference. Springer, pp. 252–263.

Riedmiller, Martin (2005). “Neural �tted Q iteration—�rst experiences with a
data e�cient neural reinforcement learning method”. In: European Confer-
ence on Machine Learning, pp. 317–328.

https://arxiv.org/abs/2003.04960
https://arxiv.org/abs/1512.06789
https://arxiv.org/abs/1512.06789

BIBLIOGRAPHY 167

Rieskamp, Jörg and Philipp E. Otto (2006). “SSL: A theory of how people learn
to select strategies.” In: Journal of Experimental Psychology: General 135.2,
p. 207.

Ripley, Brian, Bill Venables, DouglasM. Bates, KurtHornik, Albrecht Gebhardt,
and David Firth (2013). MASS: Support functions and datasets for Venables
and Ripley’s MASS. R package.

Rocke,Aidan (2019).�e true cost of AlphaGo Zero. url: https://keplerlounge.
com/artificial/intelligence/2019/03/24/alpha-go-zero.html.

Rodkin, D (1995). “10 Keys for creating top high schools”. In: Chicago, pp. 78–
85.

Russell, Stuart J. and Peter Norvig (2010). Arti�cial intelligence: A modern ap-
proach. Prentice Hall Press.

Russell, Stuart J. and Devika Subramanian (1994). “Provably bounded-optimal
agents”. In: Journal of Arti�cial Intelligence Research 2, pp. 575–609.

Russell, Stuart J. and Eric Wefald (1991). “Principles of metareasoning”. In: Ar-
ti�cial Intelligence 49.1-3, pp. 361–395.

Russo, Daniel and Benjamin Van Roy (2018). Satis�cing in time-sensitive bandit
learning. arXiv: 1803.02855 [cs.LG].

Sanger, Terence D. (1994). “Neural network learning control of robot manip-
ulators using gradually increasing task di�culty”. In: IEEE Transactions on
Robotics and Automation 10.3, pp. 323–333.

Sargent, �omas J. (1993). Bounded rationality in macroeconomics: �e Arne
Ryde memorial lectures. Oxford University Press.

Sauermann, Heinz and Reinhard Selten (1962). “Anspruchsanpassungstheorie
derUnternehmung”. In:Zeitschri� für die gesamte Staatswissenscha�/Journal
of Institutional and �eoretical Economics 4, pp. 577–597.

Savage, Leonard J. (1972).�e foundations of statistics. Courier Corporation.
Schauberger, Gunther and Gerhard Tutz (2014). catdata: Categorical data. R
package.

Scherrer, Bruno,MohammadGhavamzadeh,VictorGabillon, Boris Lesner, and
Matthieu Geist (2015). “Approximate modi�ed policy iteration and its appli-
cation to the game of Tetris.” In: Journal of Machine Learning Research 16,
pp. 1629–1676.

Schmidt, Frank L. (1971). “�e relative e�ciency of regression and simple unit
predictor weights in applied di�erential psychology”. In: Educational and
Psychological Measurement 31.3, pp. 699–714.

Selten, Reinhard (1998). “Aspiration adaptation theory”. In: Journal of Mathe-
matical Psychology 42.2-3, pp. 191–214.

Sepkoski, J. John and Michael A. Rex (1974). “Distribution of freshwater mus-
sels: Coastal rivers as biogeographic islands”. In: Systematic Biology 23.2, pp. 165–
188.

Silver,David,�omasHubert, Julian Schrittwieser, IoannisAntonoglou,Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, �ore
Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis (2017a).

https://keplerlounge.com/artificial/intelligence/2019/03/24/alpha-go-zero.html
https://keplerlounge.com/artificial/intelligence/2019/03/24/alpha-go-zero.html
https://arxiv.org/abs/1803.02855

168

Mastering Chess and Shogi by self-play with a general reinforcement learning
algorithm. arXiv: 1712.01815 [cs.AI].

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang,ArthurGuez,�omasHubert, Lucas Baker,MatthewLai, andAdrian
Bolton (2017b). “Mastering the game of Go without human knowledge”. In:
Nature 550.7676, p. 354.

Simon, Herbert A. (1956). “Rational choice and the structure of the environ-
ment.” In: Psychological Review 63.2, p. 129.

Simon, Herbert A. (1957).Models of man. J. Wiley and Sons.
Simon, Herbert A. (1959). “�eories of decision-making in economics and be-
havioral science”. In: American Economic Review 49.3, pp. 253–283.

Simon, Herbert A. (1997).Models of bounded rationality: Empirically grounded
economic reason. Vol. 3. MIT Press.

Simono�, Je�rey S. (2003). Analyzing categorical data. New York: Springer.
Simono�, Je�rey S. (2015). Online data archive. http://people.stern.nyu.

edu/jsimonof/SmoothMeth/.
Şimşek, Özgür (2008). “Behavioral building blocks for autonomous agents: De-
scription, identi�cation, and learning”. PhD thesis.University ofMassachusetts
Amherst.

Şimşek, Özgür (2013). “Linear decision rule as aspiration for simple decision
heuristics”. In:Advances in Neural Information Processing Systems, pp. 2904–
2912.

Şimşek, Özgür (2020a). “Bounded rationality for arti�cial intelligence”. In:Rout-
ledge handbook of bounded rationality. Ed. by Riccardo Viale. Routledge,
pp. 338–348.

Şimşek, Özgür (2020b). “Lexicographic decision rule”. In: Oxford research en-
cyclopedia of politics. Oxford University Press.

Şimşek, Özgür, SimonAlgorta, and Amit Kothiyal (2016). “Whymost decisions
are easy in Tetris–And perhaps in other sequential decision problems, as
well”. In: Proceedings of the 33rd International Conference on Machine Learn-
ing, pp. 1757–1765.

Şimşek, Özgür and Marcus Buckmann (2015). “Learning from small samples:
An analysis of simple decision heuristics”. In: Advances in Neural Informa-
tion Processing Systems, pp. 3141–3149.

Şimşek, Özgür and Marcus Buckmann (2017). “On learning decision heuris-
tics”. In: Imperfect Decision Makers: Admitting Real-World Rationality. PMLR
58, pp. 75–85.

Skinner, Burrhus F. (1958). “Reinforcement today.” In: American Psychologist
13.3, p. 94.

Slawski,Martin andMatthiasHein (2013). “Non-negative least squares for high-
dimensional linear models: Consistency and sparse recovery without regu-
larization”. In: Electronic Journal of Statistics 7, pp. 3004–3056.

Smyth, Gordon K. (2011). Australasian data and story library (OzDASL). http:
//www.statsci.org/data.

https://arxiv.org/abs/1712.01815
http://people.stern.nyu.edu/jsimonof/SmoothMeth/
http://people.stern.nyu.edu/jsimonof/SmoothMeth/
http://www.statsci.org/data
http://www.statsci.org/data

BIBLIOGRAPHY 169

Sokal, Robert R. and F. James Rohlf (1981). Biometry: The principles and practice
of statistics in biological research. 2nd. W. H. Freeman and Company.

Srivastava,Nitish,Geo�reyHinton,AlexKrizhevsky, Ilya Sutskever, andRuslan
Salakhutdinov (2014). “Dropout: a simple way to prevent neural networks
from over�tting”. In: Journal of Machine Learning Research 15.1, pp. 1929–
1958.

Stamey,�omas A., John N. Kabalin, John E. McNeal, Iain M. Johnstone, Fuad
Freiha, EliseA. Redwine, andNormanYang (1989). “Prostate speci�c antigen
in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical
prostatectomy treated patients.” In: Journal of Urology 141.5, pp. 1076–1083.

Stigler, George J. (1961). “�e economics of information”. In: Journal of Political
Economy 69.3, pp. 213–225.

Stock, James H. and Mark W. Watson (2003). Introduction to econometrics. Ad-
dison Wesley Boston.

Stüttgen, Peter, Peter Boatwright, and Robert T. Monroe (2012). “A satis�cing
choice model”. In:Marketing Science 31.6, pp. 878–899.

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement learning: An in-
troduction. MIT Press.

Tager, Ira B., Scott T. Weiss, Bernard Rosner, and Frank E. Speizer (July 1979).
“E�ect of parental cigarette smoking on the pulmonary function of children”.
In: American Journal of Epidemiology 110.1, pp. 15–26.

Telford, Richard D. and Ross B. Cunningham (1991). “Sex, sport, and body-size
dependency of hematology in highly trained athletes”. In: Medicine & Sci-
ence in Sports & Exercise 23, pp. 788–794.

Tennenholtz, Guy and Shie Mannor (2019). �e natural language of actions.
arXiv: 1902.01119 [cs.AI].

Tesauro, Gerald (1992). “Practical issues in temporal di�erence learning”. In:
Advances in Neural Information Processing Systems, pp. 259–266.

Tesauro, Gerald (2002). “Programming backgammon using self-teaching neu-
ral nets”. In: Arti�cial Intelligence 134.1-2, pp. 181–199.

�iery, Christophe andBruno Scherrer (2009a). “Building controllers forTetris”.
In: Icga Journal 32.1, pp. 3–11.

�iery, Christophe and Bruno Scherrer (2009b). “Improvements on learning
Tetris with cross entropy”. In: Icga Journal 32.1, pp. 23–33.

�omaz, Andrea L. and Cynthia Breazeal (2006). “Reinforcement learning with
human teachers: Evidence of feedback and guidance with implications for
learning performance”. In: Proceedings of the AAAI Conference on Arti�cial
Intelligence, pp. 1000–1005.

�run, Sebastian B. and KnutMöller (1991). “Active exploration in dynamic en-
vironments”. In:Advances in Neural Information Processing Systems, pp. 531–
538.

�run, Sebastian and Anton Schwartz (1995). “Finding structure in reinforce-
ment learning”. In:Advances in Neural Information Processing Systems, pp. 385–
392.

https://arxiv.org/abs/1902.01119

170

Tibshirani, Robert (1996). “Regression shrinkage and selection via the Lasso”.
In: Journal of the Royal Statistical Society. Series B (Methodological) 58.1, pp. 267–
288.

Tibshirani, Robert,Michael Saunders, Saharon Rosset, Ji Zhu, andKeith Knight
(2005). “Sparsity and smoothness via the fused lasso”. In: Journal of the Royal
Statistical Society Series B, pp. 91–108.

Tibshirani, Ryan J. and Jonathan Taylor (2011). “�e solution path of the gener-
alized lasso”. In:�e Annals of Statistics 39.3, pp. 1335–1371.

Tikhonov, Andrei N., A. V. Goncharsky, V. V. Stepanov, and Anatoly G. Yagola
(2013). Numerical methods for the solution of ill-posed problems. Springer.

Todd, Peter M. and Henry Brighton (2016). “Building the theory of ecological
rationality”. In:Minds and Machines 26.1-2, pp. 9–30.

Todd, PeterM., Gerd Gigerenzer, and the the ABC Research Group (2012). Eco-
logical rationality: Intelligence in the world. Oxford University Press.

Train, Kenneth (2009).Discrete choice methods with simulation. 2nd.Cambridge
University Press.

Tucker, W. (1987). “Where do the homeless come from?” In: National Review,
pp. 34–44.

Tuddenham, Read D. andMargaret M. Snyder (1954). “Physical growth of Cali-
fornia boys and girls frombirth to eighteen years.” In:University of California
Publications in Child Development 1.2, p. 183.

Tversky, Amos and Daniel Kahneman (1973). “Availability: A heuristic for judg-
ing frequency and probability”. In: Cognitive Psychology 5.2, pp. 207–232.

VanHasselt, Hado, Arthur Guez, and David Silver (2016). “Deep reinforcement
learning with double q-learning”. In: Proceedings of the AAAI Conference on
Arti�cial Intelligence. Vol. 30. 1.

Vandaele, Walter (1978). “Participation in illegitimate activities: Ehrlich revis-
ited”. In: Deterrence and Incapacitation. Ed. by A. Blumstein, J. Cohen, and
D. Nagin. National Academy of Sciences, pp. 270–335.

Vella, Francis and Marno Verbeek (1998). “Whose wages do unions raise? A
dynamic model of unionism and wage rate determination for young men”.
In: Journal of Applied Econometrics 13.2, pp. 163–183.

Venables, Bill N. and Brian D. Ripley (2002). Modern applied statistics with S.
Fourth. Springer.

Von Neumann, John and Oskar Morgenstern (1944).�eory of games and eco-
nomic behavior. Princeton University Press.

Wainer, Howard (1976). “Estimating coe�cients in linear models: It don’t make
no nevermind”. In: Psychological Bulletin 83.2, pp. 213–217.

Wainer, Howard (1978). “On the sensitivity of regression and regressors.” In:
Psychological Bulletin 85.2, pp. 267–273.

Waller, Niels G. and Je� A. Jones (2009). “Correlation weights in multiple re-
gression”. en. In: Psychometrika 75.1, pp. 58–69.

Weisberg, Sanford (2005). Applied linear regression. 3rd. Wiley.

BIBLIOGRAPHY 171

Weisberg, Sanford (2011). alr3: Data to accompany Applied Linear Regression 3rd
edition. R package.

Wesman, Alexander G. and George K. Bennett (1959). “Multiple regression vs.
simple addition of scores in prediction of college grades.” In: Educational
and Psychological Measurement.

Wickham, Hadley (2007). “Reshaping data with the reshape package”. In: Jour-
nal of Statistical So�ware 21.12.

Wilks, Samuel S. (1938). “Weighting systems for linear functions of correlated
variables when there is no dependent variable”. In: Psychometrika 3.1, pp. 23–
40.

Winner, Larry (2015). Online data archive. http : / / www . stat . ufl . edu /
∼winner/datasets.html.

Winter, Sidney G. (1971). “Satis�cing, selection, and the innovating remnant”.
In:�e Quarterly Journal of Economics 85.2, pp. 237–261.

Woike, Jan K., Ulrich Ho�rage, and Ralph Hertwig (2012). “Estimating quan-
tities: Comparing simple heuristics and machine learning algorithms”. In:
Arti�cial Neural Networks and Machine Learning–ICANN 2012, pp. 483–490.

Wu, Lan, Yuehan Yang, and Hanzhong Liu (2014). “Nonnegative-lasso and ap-
plication in index tracking”. In: Computational Statistics & Data Analysis 70,
pp. 116–126.

Xu, Xin, Dewen Hu, and Xicheng Lu (2007). “Kernel-based least squares policy
iteration for reinforcement learning”. In: IEEE Transactions on Neural Net-
works 18.4, pp. 973–992.

Yeh, I-Cheng (1998). “Modeling of strength of high-performance concrete using
arti�cial neural networks”. In:Cement and Concrete Research 28.12, pp. 1797–
1808.

Zilberstein, Shlomo (1995). “Operational rationality through compilation of any-
time algorithms”. In: AI Magazine 16.2, pp. 79–79.

Zilberstein, Shlomo (2008). “Metareasoning and bounded rationality”. In: Pro-
ceedings of the AAAI Workshop on Metareasoning: �inking about �inking.

Ziliak, James P. (1997). “E�cient estimation with panel data when instruments
are predetermined: An empirical comparison of moment-condition estima-
tors”. In: Journal of Business & Economic Statistics 15.4, pp. 419–431.

Zou, Hui and Trevor Hastie (2005). “Regularization and variable selection via
the ElasticNet”. In: Journal of the Royal Statistical Society, Series B 67, pp. 301–
320.

http://www.stat.ufl.edu/~winner/datasets.html
http://www.stat.ufl.edu/~winner/datasets.html

	INTRODUCTION
	overview
	Reinforcement learning & the tale of the optimal policy
	Notions of rational behavior
	Bounded rationality in artificial intelligence
	Outline & contributions
	Publications

	background & related literature
	Supervised learning
	Models of bounded rationality
	Reinforcement learning
	Related work

	Boundedly rational function approximation
	the predictive power of simple regression models
	Simple regression models
	Parameter estimation from training data
	Desiderata for an empirical analysis & literature review
	Empirical analysis
	Discussion

	bounded rationality as regularization: shrinkage toward equal weights
	Background
	Shrinkage toward equal weights
	Related work
	Bias-variance analysis of equal-weighting models
	Empirical analysis
	Discussion

	Boundedly rational when it matters most:Iterative policy space expansion in reinforcement learning.
	Background & overview
	M-learning
	Learning feature directions (LFD)
	Iterative policy-space expansion (IPSE)
	Related literature
	Experiments
	Discussion

	Boundedly rational action selection
	satisficing policies in markov decision processes
	Preliminaries
	Effort-quality trade-off in the space of policies
	-satisficing policies: Low-effort decision making
	From one-shot to sequential decision making.
	Aspiration tracking
	Long-term Pareto improvement by aspiration tracking.
	Value tracking
	Experiments
	Related literature
	Discussion

	DISCUSSION & APPENDIX
	discussion of contributions
	appendix a. code & implementation details
	appendix b. additional figures
	appendix c. data sets

